导航:首页 > 活动策略 > 大数据对企业营销案例

大数据对企业营销案例

发布时间:2022-09-12 22:35:18

A. [恒丰银行]基于大数据的精准营销模型应用

【案例】恒丰银行——基于大数据的精准营销模型应用 https://mp.weixin.qq.com/s?src=3&timestamp=1500159788&ver=1&signature=-86itFcexY XKcX3Vb1ypwGo8v0IU6fkNgcs *=

本篇案例为数据猿推出的大型 “金融大数据主题策划” 活动 (查看详情) 第一部分的系列案例/征文;感谢** 恒丰银行** 的投递

作为整体活动的第二部分,2017年6月29日,由数据猿主办,上海金融信息行业协会、互联网普惠金融研究院合办,中国信息通信研究院、大数据发展促进委员会、上海大数据联盟、首席数据官联盟、中国大数据技术与应用联盟协办的 《「数据猿·超声波」之金融科技·商业价值探索高峰论坛》 还将在上海隆重举办 【论坛详情】 【上届回顾(点击阅读原文查看)】

在论坛现场,也将颁发 “技术创新奖”、“应用创新奖”、“最佳实践奖”、“优秀案例奖” 四大类案例奖

本文长度为 6000 字,建议阅读 12 分钟

如今,商业银行信息化的迅速发展,产生了大量的业务数据、中间数据和非结构化数据,大数据随之兴起。要从这些海量数据中提取出有价值的信息,为商业银行的各类决策提供参考和服务,需要结合大数据和人工智能技术。国外的汇丰、花旗和瑞士银行是数据挖掘技术应用的先行者。在国内的商业银行中,大数据的思想和技术逐步开始在业务中获得实践和尝试。

面对日趋激烈的行业内部竞争及互联网金融带来的冲击,传统的上门营销、电话营销,甚至是扫街营销等方式跟不上时代的节奏。利用精准营销可节约大量的人力物力、提高营销精准程度,并减少业务环节,无形中为商业银行节约了大量的营销成本。

虽然恒丰银行内部拥有客户的基本信息和交易等大量数据,但是传统的营销系统并没有挖掘出行内大量数据的价值,仍然停留在传统的规则模型。当下,恒丰银行接入了大量的外部数据,有着更多的维度,如果将内部数据与外部数据进行交叉,则能产生更大的价值。客户信息收集越全面、完整,数据分析得到的结论就越趋向于合理和客观。利用人工智能技术,建立精准营销系统变得可能且必要。

恒丰银行基于大数据的精准营销方案是利用大数据平台上的机器学习模型深入洞察客户行为、客户需求,客户偏好,挖掘潜出在客户,实现可持续的营销计划

周期/节奏

2016.4-2016.5 完成需求梳理和业务调研,并在此基础上进行总体方案设计。
2016.5-2016.8 整理银行内、外部数据,根据营销需求制定客户标签和设计文档,实施用户画像。
2016.8-2016.10 在用户画像的基础上,构建理财产品个性化推荐系统。其中包括个性化推荐算法调研,模型对比等一系列工作。
2016.10-2017.1 客户需求预测并对客户价值进行建模,并完善整合精准营销应用模型。
2017.1-2017.3 用户画像、个性化推荐、客户价值预测等精准营销模型上线。

客户名称/所属分类

恒丰银行/客户管理

任务/目标

根据零售业务营销要求,运用多种数据源分析客户行为洞察客户需求,实现精准营销与服务,提高银行客户满意度和忠诚度。

针对不同的客户特征、产品特征和渠道特征,制定不同市场推广策略。为了完成以上任务,主要从以下几个方面构建精准营销系统:

1.用户画像: 结合用户的历史行为和基本属性给用户打标签。

2.精准推荐系统: 给用户推荐个性化理财产品, 例如在微信银行中给每个客户推荐他喜欢的产品,帮客户找到其最适合的产品,增加产品的购买率。

3.需求预测和客户价值: 新产品发售的时候,找到最有可能购买该产品的客户,进行短信营销,进而提高产品响应率。客户价值精准定位,根据客户价值水平制定不同的推荐策略。银行通过计算客户使用其产品与服务后所形成的实际业务收益,充分了解每一个客户的贡献度,为管理层提供决策支撑。

挑战

项目实施过程由用户画像,精准推荐系统,需求预测和客户价值建模三部分组成,采用TDH机器学习平台Discover所提供的算法和模型库进行开发和验证。

(一)用户画像的建立

客户标签主要包含客户基本属性,客户等级标签,客户偏好标签,客户交易特征,客户流失特征,客户信用特征,客户终身价值标签,客户潜在需求标签。

(二)精准推荐系统的建立

由于系统复杂,且篇幅有限,仅对其中最重要的理财推荐系统做详细阐述。精准推荐系统架构图如下。

2.1业务问题转化为机器学习问题

业务问题

银行理财产品个性化推荐给客户。 例如在微信银行中给每个客户推荐此客户喜欢的产品,帮客户找到其最适合的产品,增加产品的购买率。

将业务问题转化为机器学习问题

理财产品种类繁多,产品迭代速度很快,客户在繁多的产品中不能快速找到适合自己的产品,因此有必要建立一个自动化推荐模型,建立客户理财偏好,给客户推荐最适合的产品。

将银行理财产品推荐业务问题转化为机器学习问题,进而利用人工智能技术提高推荐产品的点击率和购买率。例如在恰当的时间,通过用户偏好的渠道给用户推荐产品,推荐的结果为用户购买或者未购买。这个问题可以看作一个典型机器学习二分类问题:基于历史营销数据来训练模型,让模型自动学到客户购买的产品偏好,并预测客户下次购买理财产品的概率。对模型预测出所有客户对所有产品的响应概率进行排序,可选择客户购买概率最高的topN个产品推荐给客户。

下面将叙述如何构建该推荐预测模型。

2.2数据源准备

在建立的一个理财推荐模型之前,可以预见到相似的客户可能会喜好相似的产品(需要表征客户和产品的数据),同一个人的喜好可能具有连续性(购买历史交易数据,包括基金国债等),他的存款、贷款资金可能决定了他能购买什么档次的理财等等。因此,我们需要准备以下数据。

客户基本属性:客户性别,年龄,开户时间,评估的风险等级等等。
产品基本属性:产品的逾期收益率,产品周期,保本非保本,风险等级等。
客户购买理财产品的历史:在什么时候购买什么产品以及购买的金额。
客户的存款历史: 客户历史存款日均余额等。
客户的贷款历史: 客户历史贷款信息等。
客户工资:客户工资的多少也决定了客户购买理财的额度和偏好。
用户画像提取的特征:用户的AUM等级,贡献度,之前购买基金,国债的金额等。

2.3特征转换和抽取

有了这么多数据,但是有一部分特征是算法不能直接处理的,还有一部分数据是算法不能直接利用的。

特征转换

把不能处理的特征做一些转换,处理成算法容易处理的干净特征。举例如下:

开户日期。就时间属性本身来说,对模型来说不具有任何意义,需要把开户日期转变成到购买理财时的时间间隔。

产品特征。从理财产品信息表里面可以得到风险等级,起点金额等。但是并没有标志这款产品是否是新手专属,是否是忠诚客户专属。这就需要我们从产品名字抽取这款产品的上述特征。

客户交易的时间信息。同客户的开户日期,孤立时间点的交易信息不具有任何意义,我们可以把交易时间转变为距离上次购买的时间间隔。

特征抽取

还有一部分数据算法不能直接利用,例如客户存款信息,客户交易信息。我们需用从理财交易和存款表中抽取可能有用的信息。

用户存款信息:根据我们的经验,客户购买理财之前的存款变动信息更能表明客户购买理财的真实想法,因此我们需要从客户历史存款数据抽取客户近三个月,近一个月,近一周的日均余额,以体现客户存款变化。

客户交易信息:客户最近一次购买的产品、购买的金额、及其相关属性,最近一个月购买的产品、购买的金额及其相关属性等等。

以上例举的只是部分特征。

2.4构造、划分训练和测试集

构造

以上说明了如何抽取客户购买理财的相关特征,只是针对正样本的,即客户购买某种理财时候的特征。隐藏着的信息是,此客户当时没有购买其他在发售的产品。假设把客户购买了产品的标签设为1,没有购买的产品样本设为0,我们大致有如下训练样本(只列举部分特征)。

其中客户是否购买产品是我们在有监督训练的标签,也就是我们建立的是一个预测客户是否会购买产的模型。

划分训练集和测试集

考虑到最终模型会预测将来的某时间客户购买某种产品的概率,为了更真实的测试模型效果,以时间来切分训练集和测试集。具体做法如下。假设我们有2016-09-01 ~ 2017-03-20 的理财购买相关数据。以2016-09-01 ~ 2017-03-19的理财交易数据作为训练,2017-03-20这一天的客户对每个产品是否购买的数据作为测试。以2016-09-01 ~ 2017-03-18的理财交易数据作为训练,2017-03-19这一天的客户对每个产品是否购买的数据作为测试,以此类推。

2.5模型训练

根据提取的特征,组成样本宽表,输入到分类模型,这里选择了TDH平台机器学习组件Discover所提供的近百个分布式算法进行建模和训练,同时我们还使用了特征的高阶交叉特性进行推荐的预测和分析。

2.6模型评估

评价推荐好坏的指标很多,比较常用的有

1.ROC曲线下面积(AUC)
2.logloss
3.推荐产品第一次命中rank的倒数(MRR)
4.TopN

针对银行的理财推荐实际业务,客户当天绝大多数是只购买了某一款理财,MRR(Mean Average Precision 的特殊情况)能反应这种情况下推荐的好坏。另一种直观的评价指标是TopN,假定我们只推荐N个模型认为客户最有可能购买的产品,并和真实情况比较,就能得到当天推荐的结果的混淆矩阵,TN,TP,FN,FP,recall,precision等。

我们在生产上验证了最近十天的推荐效果,即测试了2017-03-20, 2017-03-19,…… , 2017-03-11等十天的推荐效果,以下是这些结果的评价。

AUC

Logloss

MRR

0.89

0.45

0.78

也可以把新客户(之前没有购买理财)和老客户(至少购买过一次)分开评估效果。 新客户的购买占了整个理财购买的1/3 以上。

测试新客户的预测效果,可以看出模型对冷启动问题解决的好坏。

对新客户的预测效果

AUC

Logloss

MRR

0.80

0.73

0.32

对老客户的预测效果

AUC

Logloss

MRR

0.92

0.38

0.88

2.7模型优化

1.上线之前的优化:特征提取,样本抽样,参数调参
2.上线之后的迭代,根据实际的A/B testing和业务人员的建议改进模型

(三)需求预测和客户价值

“顾客终生价值”(Customer Lifetime Value)指的是每个购买者在未来可能为企业带来的收益总和。研究表明,如同某种产品一样,顾客对于企业利润的贡献也可以分为导入期、快速增长期、成熟期和衰退期。

经典的客户终身价值建模的模型基于客户RFM模型。模型简单的把客户划分为几个状态,有一定意义但不一定准确,毕竟RFM模型用到的特征不全面,不能很好的表征客户的价值以及客户银行关系管理。

为了方便的对客户终身价值建模,有几个假定条件。其一把客户的购买价值近似为客户为企业带来的总收益,其二把未来时间定义在未来一个季度、半年或者一年。也就是我们通过预测客户在下一个时间段内的购买价值来定义客户的终身价值。因此,我们将预测的问题分为两个步骤:第一步预测这个客户在下一个阶段是否会发生购买(需求预测)。第二步对预测有购买行为的客户继续建模预测会购买多大产品价值。

3.1需求预测

提取客户定活期存款、pos机刷卡、渠道端查询历史等特征,以这些特征作为输入预测用户在当前时间节点是否有购买需求,训练和测试样本构造如下:

1.历史用户购买记录作为正样本。
2.抽样一部分从未购买的理财产品的用户作为负样本集合Un,对于每一个正样本Un中随机选取一个用户构造负样本。
3.选取2016.04-201610 的购买数据作为训练样本,2016.11的数据作为测试样本。

使用机器学习算法进行分类训练和预测,重复上述实验,得到下列结果:

AUC: 0.930451274
precision: 0.8993963783
recall: 0.8357507082
fmeasure: 0.8664062729

进一步对客户分群之后,可以更好的对新客户进行建模,对于老客户我们可以进一步提取他们的历史购买特征,预测他们在下一段时间内购买的产品价值(数量,金额等),对于新客户,可以进根据他的存款量预测其第一次购买的产品价值,把存款客户变成理财客户。通过分析客户存款变动于客户购买理财的关系,我们发现客户购买理财的前一段时间内定活期的增加的有不同的模式,如下图。

根据需求预测模型,我们给出新客户最有可能购买的top N 列表,然后由业务人员进行市场推广。

3.2客户价值预测

进一步预测有购买需求的客户的购买价值高低。这是个回归问题,但是预测变量从二分类变量变为预测连续的金额值。训练的时候预测值取训练周期内(一个月或者季度)客户所购买的总金额。

算出客户的当前价值(即当前阶段购买的产品价值)和未来价值(预测的下一个阶段的客户价值)可以帮助我们鉴定客户处于流失阶段,或者上升阶段,或者是稳定阶段。当前价值取的是当前时间前三个月的交易量。对流失阶段高价值客户可以适当给予营销优惠,对于有购买意向的客户适当引导。如下图所示。

结果/效果

一是提高银行营销准确性。随着客户不断增加,理财产品也在不断推陈出新,在实时精准营销平台的帮助下,银行从以前盲目撒网式的营销方式转变到对不同客户精准触达,提高了理财产品的营销成功率,降低销售和运作成本。理财产品推荐的上线以来,产品推荐成功率比专家经验排序模型最高提升10倍。

二是增加银行获客数量。精准营销系统洞察客户潜在需求和偏好,提高了银行获取目标客户群的准确率。从数百万客户中,通过机器学习模型,找到最有可能购买产品的客户群,通过渠道营销,实现响应率提升。相比传统盲发模式,发送原38%的短信即可覆盖80%的客户。

通过构建基于大数据的精准营销方案,恒丰银行深入洞察客户行为、需求、偏好,帮助银行深入了解客户,并打造个性化推荐系统和建立客户价值预测模型,实现可持续的营销计划。

B. 大数据分析时代对市场营销的影响研究

下面我为你准备的关于市场营销的论文,欢迎阅读借鉴,希望对大家有帮助。

一、数据分析时代演变历程

(一)数据1.0时代

数据分析出现在新的计算技术实现以后,分析1.0时代又称为商业智能时代。它通过客观分析和深入理解商业现象,取缔在决策中仅凭直觉和过时的市场调研报告,帮助管理者理性化和最大化依据事实作出决策。首次在计算机的帮助下将生产、客户交互、市场等数据录入数据库并且整合分析。但是由于发展的局限性对数据的使用更多的是准备数据,很少时间用在分析数据上。

(二)数据2.0时代

2.0时代开始于2005年,与分析1.0要求的公司能力不同,新时达要求数量分析师具备超强的分析数据能力,数据也不是只来源于公司内部,更多的来自公司外部、互联网、传感器和各种公开发布的数据。比如领英公司,充分运用数据分析抢占先机,开发出令人印象深刻的数据服务。

(三)数据3.0时代

又称为富化数据的产品时代。分析3.0时代来临的标准是各行业大公司纷纷介入。公司可以很好的分析数据,指导合适的商业决策。但是必须承认,随着数据的越来越大,更新速度越来越快,在带来发展机遇的同时,也带来诸多挑战。如何商业化地利用这次变革是亟待面对的课题。

二、大数据营销的本质

随着顾客主导逻辑时代的到来以及互联网电商等多渠道购物方式的出现,顾客角色和需求发生了转变,世界正在被感知化、互联化和智能化。大数据时代的到来,个人的行为不仅能够被量化搜集、预测,而且顾客的个人观点很可能改变商业世界和社会的运行。由此,一个个性化顾客主导商业需求的时代已然到来,大数据冲击下,市场营销引领的企业变革初见端倪。

(一)大数据时代消费者成为市场营销的主宰者

传统的市场营销过程是通过市场调研,采集目前市场的信息帮助企业研发、生产、营销和推广。但是在大数据以及社会化媒体盛行的今天,这种营销模式便黯然失色。今天的消费者已然成为了市场营销的主宰者,他们会主动搜寻商品信息,货比三家,严格筛选。他们由之前的注重使用价值到更加注重消费整个过程中的体验价值和情境价值。甚至企业品牌形象的塑造也不再是企业单一宣传,虚拟社区以及购物网站等的口碑开始影响消费者的购买行为。更有甚者,消费者通过在社交媒体等渠道表达个人的需求已经成为影响企业产品设计、研发、生产和销售的重要因素。

(二)大数据时代企业精准营销成为可能

在大数据时代下,技术的发展大大超过了企业的想象。搜集非结构化的信息已经成为一种可能,大数据不单单仅能了解细分市场的可能,更通过真正个性化洞察精确到每个顾客。通过数据的挖掘和深入分析,企业可以掌握有价值的信息帮助企业发现顾客思维模式、消费行为模式。尤其在今天顾客为了彰显个性,有着独特的消费倾向。相对于忠诚于某个品牌,顾客更忠诚与给自己的定位。如果企业的品牌不能最大化地实现客户价值,那么即使是再惠顾也难以保证顾客的持续性。并且,企业不能奢望对顾客进行归类,因为每个顾客的需求都有差别。正是如此,大数据分析才能更好地把握顾客的消费行为和偏好,为企业精准营销出谋划策。

(三)大数据时代企业营销理念――“充分以顾客为中心创造价值”

传统的营销和战略的观点认为,大规模生产意味着标准化生产方式,无个性化可言。定制化生产意味着个性化生产,但是只是小规模定制。说到底,大规模生产与定制化无法结合。但是在今天,大数据分析的营销和销售解决的是大规模生产和顾客个性化需求之间的矛盾。使大企业拥有传统小便利店的一对一顾客关系管理,以即时工具和个性化推荐使得大企业实现与顾客的实时沟通等。

三、基于数据营销案例研究――京东

京东是最大的自营式电商企业。其中的京东商城,涵盖服装、化妆品、日用品、生鲜、电脑数码等多个品类。在整个手机零售商行业里,京东无论是在销售额还是销售量都占到市场份额一半的规模。之所以占据这样的优势地位,得益于大数据的应用,即京东的JD Phone的计划。

JD Phone计划是依据京东的大数据和综合服务的能力,以用户为中心整合产业链的优质资源并联合厂商打造用户期待的产品和服务体验。京东在销售的过程中,通过对大数据的分析,内部研究出一种称为产品画像的模型。这个模型通过综合在京东网站购物消费者的信息,例如:年龄、性别、喜好等类别的信息,然后进行深入分析。根据分析结果结合不同的消费者便有诸如线上的程序化购买、精准的点击等营销手段,有效的帮助京东实现精准的营销推送。不仅如此,通过对于后续用户购物完成的售后数据分析,精确的分析商品的不足之处或者消费者的直接需求。数据3.0时代的一个特征便是企业不在单纯的在企业内部分析数据,而是共享实现价值共创。所以,京东把这些数据用于与上游供应商进行定期的交流,间接促进生产厂商与消费者沟通,了解市场的需求,指导下一次产品的市场定位。总的来说,这个计划是通过京东销售和售后环节的大数据分析,一方面指导自身精准营销,另一方面,影响供应商产品定位和企业规划,最终为消费者提供满足他们需求的个性化产品。

四、大数据营销的策略分析

(一)数据分析要树立以人为本的思维

“以人为本”体现在两个方面,一方面是数据分析以客户为本,切实分析客户的需求,用数据分析指导下一次的产品设计、生产和市场营销。另一方面,以人为本体现在对用户数据的保密性和合理化应用。切实维护好大数据和互联网背景下隐私保护的问题,使得信息技术良性发展。

(二)正确处理海量数据与核心数据的矛盾

大数据具有数据量大、类型繁多、价值密度低和速度快时效高的特点。所以在众多海量的数据中,只有反映消费者行为和市场需求的信息才是企业所需要的。不必要的数据分析只会影响企业做出正确的决策。鉴于此,首先企业需要明确核心数据的标准;其次企业要及时进行核心数据的归档;最后要有专业的数据分析专业队数据进行分析,得出科学合理的结果以指导实践。

(三)整合价值链以共享数据的方式实现价值创造

C. 大数据营销,企业必须重视的“一亩三分地”

大数据营销,企业必须重视的“一亩三分地”

互联网时代,也是一个数据大爆炸的时代,很多人通过网络营销,却忽略了一个重要的基础,那就是数据,而以各种各样数据为基础的互联网营销,需要的是一种大数据营销的思维,这种思维对于提升营销的质量和成功率都有极大的帮助。

何为大数据营销,那么它又和网络营销的有何关联呢?其实大数据营销并不是一个复杂的概念,指的是通过所针对的目标的各种数据的变化和分析,来获得营销方向的指导,这种数据通过表格、文字等形式表现出来,让分析者可以一目了然更好做出决策,但是由于数据涉及面广,所以对于一个通过大数据营销的人来说,这种工作量其实是相当大的。恰巧,互联网营销即网络营销,对于个体或者群体的数据的变量需求是复杂且必须的,所以大数据营销可以为网络营销带来更精确的销售指导,做到有的放矢,做到高效针对性的营销。

但是相对来说,大数据营销的数据来源是十分广泛的,它们包括时下流行的互联网、移动电视、移动3G互联网等多个平台,而这些数据必须有时效性和针对性,但是同样的在这些平台上出现的数据过于广泛,过于抽象,这就需要通过大数据营销的人对这些数据有着敏锐和精准的感受,对数据的分析更为透彻,要通过这如千丝百缕的空间信息中抽取自己最需要的那些数据,这也是大数据时代的一个特征,信息的泛滥,导致本身的数据常常被忽略,而专业的营销者便不会忽略,将努力的去分析这些数据背后的真相。

不过即使是大数据营销,依然需要注意,正如互联网思维有“唯快不败”之说。网络营销同样强调时效,网络时代,营销更需争抢“第一落点”,获得“先入为主”的传播效果;同时,要以信息的完整性战胜碎片化传播,以简明扼要的叙述为海量信息导读,以信息的真实准确确立权威性,以吸引这些大数据背后的真正需求的用户,做到真正通过数据,让数据为你服务,而不是让自己为数据服务,这才是网络营销通过大数据营销的这种方式需要注意的问题。

同样,不可否认的是大数据营销也需要遵循营销的4P原理,即产品、价格、地点和营销,这里的产品的数据则是受众人群的选择,通过对产品的受众人群的选择来做好数据的分析,而价格也作为一个数据影响着消费者的购买,对于价格的波动变化对人的购买者的影响也需要时刻注意,当然地点和营销是相互结合的,通过一个平台的营销的效果通过一种数据化的形式来展现,通过这种数据分析,将会凌驾于许多抽象的分析之上,可以说大数据营销和网络营销是臭味相投的,也是极易操作的,只不过相对来说,工作量毕竟还是比较大的,但是其结果相对来说更为精确,效果也相对较好。

最经典的一个例子,《纸牌屋》正是大数据营销最为经典的案例,通过对于观众的需求的数据分析,也由出品方Netflix在拍摄作品之前,在3000万的美国收视用户中做了充实的调研,总结了观众到底爱看什么题材、喜欢哪个导演拍、谁来演、哪个时间播等数据,顺应大数据营销打造了一部极为精彩的影视作品,又或者,对于前不久一家在上海的一家蛋糕房的高销量,也是通过对来往顾客的口味的需求的数据分析,而这分析不仅是通过调查问卷的方式,更依托于几个平台同时开展,而这也让他的蛋糕店得以脱颖而出,而这也是以大数据营销为依托,告竣精准营销的最终目的。

可以说大数据营销,是网络营销的指南针,通过数据的指引,网络营销的水平将会上升到一个新的层次,不如说若互联网营销像七级浮屠的话,那么有了大数据营销的指引,网络营销将会突破这七层浮屠,到达一个新的界限,有的人也许不相信,但是事实上有无数的例子已经验证了它的成功和高校,对于纯数据的分析加上对于现状的综合分析,造就出的数据将不仅是数据本身,而是一种对数据的深入的解读,而商家不正是需要这种全面的分析和详尽的数据吗?

大数据营销和网络营销的结合,就是天生一对的结合,而这种结合带来的经济效益也是难以估量的,不过也要记住凡事也不一定是完美的,大数据营销的方式也未必是全能的,所以对于网络营销的人来说,让数据为自己服务才是最正确的,不要被困于数据,而做了数据的奴隶,毕竟即使是大数据营销,也需要注意现实条件的变化,这种变化和现实的联系是千丝万缕的,当然,大数据时代的浪潮当然离不开大数据营销。

以上是小编为大家分享的关于大数据营销,企业必须重视的“一亩三分地”的相关内容,更多信息可以关注环球青藤分享更多干货

D. 大数据攻略案例分析及结论

大数据攻略案例分析及结论

我们将迎来一个“大数据时代”。与变化相始终的中国企业,距离这场革命还有多远?而追上领先者又需要多快的步伐?

{研究结论}

怎样才能用起来大数据?障碍如何解决?中国企业家研究院对10多家在大数据应用方面的领先企业进行了采访调研,更多家企业进行了书面资料调研,我们发现:

■ 当前中国企业的大数据应用可以归类为:大数据运营、大数据产品、大数据平台三大=领域,前两者更多是企业内部的应用,后者则在于用大数据来繁荣整个平台企业群落的生态。

■ 大数据营销的本质是一个影响消费者购物前心理路径的问题,而这在大数据时代前很难做到。

■ 对于传统企业而言,要打通线上与线下营销,实现新的商业模式,如O2O等,离不开大数据。

■ 虽然大数据应用往往集中于大数据营销,但对于一些企业,大数据的应用早已超越了营销范畴,全面进入了企业供应链、生产、物流、库存、网站和店内运营等各个环节。

■ 对于大部分企业,由于数据分析人员与业务人员之间的彼此视角与思考方向不同,大数据分析和运营之间存在脱节情况,这是大数据无法用于企业运营最大的阻力

■ 对于大多数互联网公司来说,大数据量、大用户量是一个相互促进,强者越强的循环过程。

■ 对于大型互联网平台,大数据已经成为其生态循环中的血液,对于这些企业,最重要

的不是如何利用大数据改进自身运营,而是利用大数据更好地繁荣平台生态。

■ 对于平台企业,它们的大数据策略正逐渐从大数据运营,向运营大数据转变,前者和

后者的差别在于,前者只是运营改进的动力,而后者则成为企业实现未来战略的核心资源。

我们都已被反复告知:我们将迎来一个“大数据时代”。

大数据应用,将和云计算、3D打印这些技术变革一样,颠覆既有规则,并成为先行企业的制胜关键。

与变化相始终的中国企业,距离这场革命还有多远?而追上领先者又需要多快的步伐?

来自于互联网、移动互联网、物联网传感器、视频采集系统的数据正海量增长,汇成大数据的海洋,相伴的是海量数据存储、分析技术的突破性发展,所有这一切都给企业的应用带来了无限可能性。

许多企业希望将大数据用起来,带动企业的经营,但不知从哪里着手。它们不惜重金投资大数据信息系统、分析系统,聘请更多的人才,希望能从这个新趋势中获益,不过却无奈地发现,大数据仍然停留在云端,没有带来多少实际收益。它们找不到大数据与业务结合的突破口。而一些真正将大数据应用于实战的企业,却在应用过程中困难重重:大数据无法与业务结合;没有收集、分析海量数据的能力;经营人员缺少应用大数据的动力;数据来源鱼龙混杂难以使用……

中国企业家研究院对当前中国企业大数据应用的状况进行了归纳分类,以帮助企业了解实际应用大数据时的困局难点,并提供领先企业的典型案例以资借鉴。

表1

表2

大数据运营—企业提升效率的助推力

对于大多数企业而言,运营领域的应用是大数据最核心的应用,之前企业主要使用来自生产经营中的各种报表数据,但随着大数据时代的到来,来自于互联网、物联网、各种传感器的海量数据扑面而至。于是,一些企业开始挖掘和利用这些数据,来推动运营效率的提升。大数据运营应用中,大数据的应用分为三类:用于企业外部营销、用于内部运营,以及用于领导层决策。

一、大数据营销

大数据营销的本质是影响目标消费者购物前的心理路径,它主要应用在三个方面:1、大数据渠道优化,2、精准营销信息推送,3、线上与线下营销的连接。在消费者购物前,通过各种方式,直接介入其信息收集和决策过程。而这种介入,是建立在对于线上与线下海量用户数据分析的基础之上。相比传统狂轰滥炸或等客上门的营销,大数据营销无论在主动性和精准性方面,都有非常大的优势。它是目前主要的大数据应用领域。

大数据营销不仅仅是用大数据找出目标顾客,向其发布促销信息,它还可以做到:

实现渠道优化。根据用户的互联网痕迹进行渠道营销效果优化,就是根据互联网上顾客的行为轨迹来找出哪个营销渠道的顾客来源最多,哪个来源顾客实际购买量最多,是否是目标顾客等等,从而调整营销资源在各个渠道的投放。例如东风日产,它利用对顾客来源的追踪,来改进营销资源在各个网络渠道如门户网站、搜索和微博的投放。

精准营销信息推送。精准建立在对海量消费者的行为分析基础之上,消费者网络浏览、搜索行为被网络留下,线下的购买和查看等行为可以被门店的POS机和视频监控记录,再加上他们在购买和注册过程中留下的身份信息,在商家面前,正逐渐呈现出消费者信息的海洋。

一些企业通过收集海量的消费者信息,然后利用大数据建模技术,按消费者属性(如所在地区、性别)和兴趣、购买行为等维度,挖掘目标消费者,然后进行分类,再根据这些,对个体消费者进行营销信息推送。比如孕妇装品牌十月妈咪通过对自己微博上粉丝评论的大数据分析,找出评论有“喜爱”相关关键词的粉丝,然后打上标签,对其进行营销信息推送。京东商城副总经理李曦表示:“用大数据找出不同细分的顾客需求群,然后进行相应的营销,是京东目前在做的事情。”小也化妆品将自身网站作为收集消费者信息的雷达,对不同消费者推荐相应的肌肤解决方案,创始人肖尚略希望在未来,大数据营销能替代网站的作用,真正成为面向顾客的前端。

打通线上线下营销。一些企业将互联网上海量消费者的行为痕迹数据与线下购买数据打通,实现了线上与线下营销的协同。比如东风日产,线上与线下的协同营销方式为:其门户网站带来订单线索,而通过这些线索,服务人员进行电话回访,从而推动顾客在线下交易。在此过程中,东风日产记录了消费者进入、浏览、点击、注册、电话回访和购买各个环节的数据,实现了一个横跨线上线下,以大数据分析为支持的,营销效果不断优化的闭环营销通路。而国双科技,衡量某一地区线下促销活动的效果,就是看互联网上,来自这个地区对于促销内容的搜索量。一些企业,通过鼓励线下顾客使用微信和Wi-Fi等可追踪消费者行为和喜好的设备,来打通线上与线下数据流,银泰百货计划铺设Wi-Fi,鼓励顾客在商场内使用,然后根据Wi-Fi账号,找出这个顾客,再通过与其它大数据挖掘公司合作,以大数据的手段,发掘这个顾客在互联网的历史痕迹,来了解这个顾客的需求类型。

二、大数据用于内部运营

相比大数据营销,大数据在内部运营中的应用更深入,对于企业内部的信息化水平,以及数据采集和分析能力的要求更高。本质上,是将企业外部海量消费者数据与企业内部海量运营数据联系起来,在分析中得到新的洞察,提升运营效率。(详见P96表5:大数据在内部运营中的应用)

表5

三、大数据用于决策

在大数据时代,企业面对众多新的数据源和海量数据,能否基于对这些数据的洞察,进行决策,进而将其变成一项企业竞争优势的来源?同大数据营销和大数据内部运营相比,运用大数据决策难度最高,因为它需要一种依赖数据的思维习惯。

已有少数企业开始尝试。比如国内一些金融机构在推出一个金融产品时,会广泛分析该金融产品的应用情况和效果、目标顾客群数据、各种交易数据和定价数据等,然后决定是否推出某个金融产品。

但是,中国企业家研究院在调研中发现,目前中国企业当中,大数据决策的应用非常之少,许多企业领导者进行决策时,仍习惯于凭借历史经验和直觉。

大数据产品——企业利润滋长的新源泉

大数据除了用于运营外,还能够与企业产品结合,成为企业产品背后竞争力的核心支持或者直接成为产品。提供大数据产品的企业分为两类,直接提供大数据产品的企业,以及将大数据作为产品和服务核心支撑的企业。前者主要为大数据产业链中提供数据服务的参与者,包括数据拥有者、存储企业,挖掘企业、分析企业等,后者则主要是那些以大数据为产品核心支撑的企业,它们大多是互联网企业,其产品和服务先天就有大数据基因,这些企业包括搜索引擎、在线杀毒、互联网广告交易平台以及众多植根于移动互联网之上,为用户提供生活和资讯服务的APP等。

表3

表4

一、大数据作为产品核心支持

它们主要在以下几方面使用大数据:

1、提供信息服务。很多互联网企业通过对海量互联网信息和线下信息的整合和分析,为个人和企业提供信息服务,典型的如网络、去哪儿、一淘、高德地图、春雨医生等等。在美国,一些互联网企业甚至根据大数据提供更深度的预测信息服务,美国科技创新公司farecast,通过分析特定航线机票的价格,帮助消费者预测机票价格走势。

2、分析用户的个性化需求,借此提供个性化产品和服务,或者实现更精准的广告。典型的有移动社交工具陌陌、网络、腾讯、广告交易平台品友互动以及一些互联网游戏商。这种应用往往先是收集海量用户的互联网行为数据,将用户分类,根据不同类型的用户,提供个性化的产品,或者提供个性化的促销信息。比如网易等门户网站推出了订阅模式,让使用者按照个人喜好方便地定制和整合不同来源的信息。

3、增强产品功能。对于很多互联网产品,如杀毒软件、搜索引擎等等,海量数据的处理能够让产品变得更聪明更强大,如果没有大数据,产品的功能就大大减弱。比如奇虎360公司的360杀毒软件,凭借每天海量的杀毒处理,建立了庞大的病毒库,这使它能够更快地发现病毒,而一些小的杀毒软件公司则无法做到这一点。

4、掌控信用状况,提供信贷服务。阿里巴巴上汇集了海量中小企业的日常资金与货品往来,通过对这些往来数据的汇总与分析,阿里巴巴能发现单个企业的资金流与收入情况,分析其信用,找出异常情况与可能发生的欺诈行为,控制信贷风险。

5、实现智能匹配。婚恋网站、交易平台等,利用大数据可以进行精准而高效的配对服务。网易花田会挖掘用户行为数据,比如点击哪些异性的页面,发表什么样的评论,建立用户兴趣模型,从而挖掘到用户所期待另一半的类型,然后主动推荐与对方匹配度比较高的人选。2010年,阿里巴巴尝试性地推出“轻骑兵”服务,由阿里巴巴将中国各产业集群地的供应商与海外买家的个性采购需求进行快速匹配,所凭借的,就是对供应商的海量交易数据信息的整合与挖掘。

大数据作为产品核心支撑的关键在于用户量。对于大多数互联网公司来说,用户量越多,收集的数据越多,凭借更多的数据,其产品与商业模式会不断改进,进而带来更多的用户。

二、大数据直接作为产品

对一些企业,大数据直接成为了产品,这些产品包括海量数据、分析、存储与挖掘的服务等,目前大数据产业链正在形成过程中,出现了一批开放、出售、授权大数据和提供大数据分析、挖掘的公司和机构,前者主要是一些拥有海量数据的公司,将数据服务作为新的盈利来源。如大型的互联网平台、民航、电信运营商、一些拥有大数据的政府机构等等,后者主要包括一些能够存储海量数据或者将海量数据与业务场景结合,进行分析和挖掘,或者提供相关产品的公司,如IBM、SAP、拓而思、天睿公司。它们为大数据应用者们提供海量数据存储、数据挖掘、图像视频、智能分析等服务以及相关系统产品。

大数据平台——企业群落繁荣的滋养剂

相对企业本身对大数据的应用,大数据平台更多是利用大数据来搭建企业生态。一些拥有庞大数据资源的大型互联网平台,已变为包含海量寄生者的生态系统。在这个生态系统中,它们将海量用户互联网行为痕迹和分析提供给平台上的企业,用于它们改善经营,推动整个平台生态繁荣,在这一过程中,它们也收取数据服务费。阿里巴巴就是一个典型的例子,从数据魔方、黄金策到聚石塔,阿里巴巴不断地为平台上中小电商提供数据产品和服务。

而网络已建成了包括网络指数、司南、风云榜、数据研究中心和网络统计在内的五大数据体系平台,帮助其营销平台上的企业了解消费者行为、兴趣变化,以及行业发展状况、市场动态和趋势、竞争对手动向等信息。

而当大数据从企业内部运营的动力,变成平台企业的产品和服务时,平台企业也在经历着一个从大数据运营到运营大数据的阶段。数据从运营的支持工具,变成了生产资料。此前平台们的关注点,更多的是如何用好现有的大数据。而未来,它们的关注点则更多是如何将大数据这个生产资料管理好、经营好,如何更好地为平台上的企业服务。这就涉及到收集的数据质量怎样?格式标准是否统一?数据作为一种原材料,其精细化程度如何?是否符合平台上企业应用的具体场景?是平台上企业拿来就能用的,还是还需要平台上的企业再加工?

为解决这些问题,各个平台在积极地努力。比如阿里巴巴建立了数据委员会,在统一数据格式标准、从源头上保证数据的质量,采集和加工出精细化的数据,确保其能符合平台企业的应用场景等方面,不遗余力地尝试。尤其在大数据精细化方面,阿里巴巴更是作为其大数据战略的重点。这方面,腾讯目前也在加快步伐。比如新版腾讯网出现了“一键登录”的提示,用户可以在上面通过一些细分标签,订阅自己关注的内容。实际上,这也是腾讯收集更精细化的用户兴趣数据的一个有效手段。

Tips

大数据实战手册

将大数据应用于内部运营中时,企业会遇到一些常见问题

1企业如何获取与分析数据?

互联网是大数据的一个主要来源,一些线下的传统企业很难获得。但它们可以:

a 和拥有或能抓取海量数据的平台、企业以及政府机构合作。比如淘宝上的电商就购买淘宝收集的海量数据中与自身运营相关的部分,用于自身业务。再如卡夫通过与IBM合作,在博客、论坛和讨论版的内容中抓取了47.9万条关于自己产品的讨论信息,通过大数据分析出消费者对卡夫食品的喜爱程度和消费方式。

b 建立自己在互联网上的平台,比如朝阳大悦城利用自己的微信、微博等平台收集消费者评论数据。

c 许多传统企业没有分析海量数据的能力,此时它们可以和大数据分析和挖掘公司合作,目前市场上已经有天睿公司、IBM、百分点、华胜天成等一批提供大数据分析和挖掘服务的公司,它们是传统企业进行大数据分析可以借助的力量。

2 如何避免大数据应用时的部门分割?

对于许多企业,其信息流被各部门彼此分割,数据难以互通,对于这种情况下,大数据的共享和汇集就只是一个泡影,更难以实现大数据的深度应用。

要打通部门之间信息分割的局面,首先要建立统一的、集中的数据系统。就像立白信息与知识总监王永红所说的,“要真正用好大数据,企业要采用大集中的信息系统。”从更深入的角度来谈,企业信息流的部门分割,更在于企业部门之间的分割,比如有一些企业的营销按照渠道分割,导致对于顾客的大数据收集和分析效果大打折扣。

IBM智慧商务技术总监杨旭青认为,“很多时候由于组织结构问题,大数据分析有效性大大降低了。”这就需要组织与流程层面的重新设计,在这方面,阿里巴巴的部门负责人轮岗制度,对于打破部门壁垒无疑是一剂好药。而一些企业为了打破部门分割,建立了矩阵型的组织结构,强化部门间的横向合作,这些无疑为大数据的汇集、共享与应用创造了良好条件。

3 如何让业务人员重视大数据的应用?

解决这个问题,一方面在于一把手对整个企业数据文化的倡导,比如1号店董事长于刚就要求业务人员无论在开会,还是汇报工作时,都以数据说话,而马云更是将大数据提升到了战略高度。

另一方面,也在于数据部门的带动,阿里巴巴数据委员会负责人车品觉分享了经验,“因为运营部门的业务人员很难看到大数据的潜力,可以首先从一些对业务见效快,见效显著的数据项目出发,通过一两个项目的成功,调动对方的积极性,然后再逐步一个个地引导。”

4 为何大数据工作与运营需求脱节?

这往往是由于数据人员与业务人员视角、专业知识不同而导致的。大数据人员做了很多努力,但是业务人员却认为这些努力无关痛痒。如何解决这个问题?

有的企业从组织设计上发力,将大数据纳入业务分析部门的管理之下,用业务统驭数据。对于朝阳大悦城,由主要负责战略和经营分析的部门来管理大数据工作,其中的大数据分析人员则作为支持人员。在负责人张岩看来,大数据要靠商业法则指导,关键是找到业务需求的点,然后由数据分析和挖掘人员实现。在具体操作中,大悦城对微信的数据挖掘,挖掘什么样的关键词,由业务分析人员确定,而具体挖掘则由数据部门做;有的企业从流程设计上着手,推动业务部门与数据部门人员之间的沟通,建立数据人员工作与效果挂钩的考核机制。

例如阿里巴巴根据数据挖掘的成效(比如带来的商品转化率的提升)来考核数据挖掘师,考核数据分析师则看其分析结果能否出现在经营负责人的报告中。从数据部门自身角度则需要降低运营部门使用数据的障碍和门槛,比如立白集团的数据人员会努力尝试向运营部门提供更易懂、更生动的图形化数据分析界面,在立白老板办公室上,就有一份“客户运营健康体检表”,让老板对全国经销商的当月销售情况一目了然。再如阿里巴巴开发的无线Bi,让经营人员在手机上也可以看到大数据分析结果,拿车品觉的话说,“以数据之氧气包围经营人员。”

以上是小编为大家分享的关于大数据攻略案例分析及结论的相关内容,更多信息可以关注环球青藤分享更多干货

E. 有哪些大数据分析案例

如下:

1. 大数据应用案例之:医疗行业

1)Seton Healthcare是采用IBM最新沃森技术医疗保健内容分析预测的首个客户。该技术允许企业找到大量病人相关的临床医疗信息,通过大数据处理,更好地分析病人的信息。

在加拿大多伦多的一家医院,针对早产婴儿,每秒钟有超过3000次的数据读取。通过这些数据分析,医院能够提前知道哪些早产儿出现问题并且有针对性地采取措施,避免早产婴儿夭折。

它让更多的创业者更方便地开发产品,比如通过社交网络来收集数据的健康类App。也许未来数年后,它们搜集的数据能让医生给你的诊断变得更为精确,比方说不是通用的成人每日三次一次一片,而是检测到你的血液中药剂已经代谢完成会自动提醒你再次服药。

2)大数据配合乔布斯癌症治疗

乔布斯是世界上第一个对自身所有DNA和肿瘤DNA进行排序的人。为此,他支付了高达几十万美元的费用。他得到的不是样本,而是包括整个基因的数据文档。医生按照所有基因按需下药,最终这种方式帮助乔布斯延长了好几年的生命。

2. 大数据应用案例之:能源行业

1)智能电网现在欧洲已经做到了终端,也就是所谓的智能电表。在德国,为了鼓励利用太阳能,会在家庭安装太阳能,除了卖电给你,当你的太阳能有多余电的时候还可以买回来。

通过电网收集每隔五分钟或十分钟收集一次数据,收集来的这些数据可以用来预测客户的用电习惯等,从而推断出在未来2~3个月时间里,整个电网大概需要多少电。有了这个预测后,就可以向发电或者供电企业购买一定数量的电。

因为电有点像期货一样,如果提前买就会比较便宜,买现货就比较贵。通过这个预测后,可以降低采购成本。

2)丹麦的维斯塔斯风能系统(Vestas Wind Systems)运用大数据,系统依靠的是BigInsights软件和IBM超级计算机,分析出应该在哪里设置涡轮发电机,事实上这是风能领域的重大挑战。在一个风电场20多年的运营过程中,准确的定位能帮助工厂实现能源产出的最大化。

为了锁定最理想的位置,Vestas分析了来自各方面的信息:风力和天气数据、湍流度、地形图、公司遍及全球的2.5万多个受控涡轮机组发回的传感器数据。这样一套信息处理体系赋予了公司独特的竞争优势,帮助其客户实现投资回报的最大化。

3. 大数据应用案例之:通信行业—通过大数据分析挽回核心客户

法国电信-Orange集团旗下的波兰电信公司Telekomunikacja Polska是波兰最大的语音和宽带固网供应商,希望有效的途径来准确预测并解决客户流失问题。

他们决定进行客户细分,方法是构建一张“社交图谱”- 分析客户数百万个电话的数据记录,特别关注 “谁给谁打了电话”以及“打电话的频率”两个方面。“社交图谱”把公司用户分成几大类,如:“联网型”、“桥梁型”、“领导型”以及“跟随型”。

这样的关系数据有助电信服务供应商深入洞悉一系列问题,如:哪些人会对可能“弃用”公司服务的客户产生较大的影响?挽留最有价值客户的难度有多大?运用这一方法,公司客户流失预测模型的准确率提升了47%。

4、大数据应用案例之:零售业—大数据帮零售企业制定促销策略

北美零售商百思买在北美的销售活动非常活跃,产品总数达到3万多种,产品的价格也随地区和市场条件而异。由于产品种类繁多,成本变化比较频繁,一年之中,变化可达四次之多。

结果,每年的调价次数高达12万次。最让高管头疼的是定价促销策略。公司组成了一个11人的团队,希望透过分析消费者的购买记录和相关信息,提高定价的准确度和响应速度。

定价团队的分析围绕着三个关键维度:

1)数量:团队需要分析海量信息。他们收集了上千万的消费者的购买记录,从客户不同维度分析,了解客户对每种产品种类的最高接受能力,从而为产品定出最佳价位。

2)多样性:团队除了分析了购买记录这种结构化的数据外,他们也利用社交媒体发帖这种新型的非结构化数据。由于消费者需要在零售商专页上点赞或留言以获得优惠券,团队利用情感分析公式来分析专页上消费者的情绪,从而判断他们对于公司的促销活动是否满意,并微调促销策略。

3)速度:为了实现价值最大化,团队对数据进行实时或近似实时的处理。他们成功地根据一个消费者既往的麦片购买记录,为身处超市麦片专柜的他/她即时发送优惠券,为客户带来便利性和惊喜。

透过这一系列的活动,团队提高了定价的准确度和响应速度,为零售商新增销售额和利润数千万美元。

5、大数据应用案例之:网络营销行业(SEM)

很多企业在做SEM的过程中,都有这样的感触:每年都会花费大量的预算在SEM推广中,但是因为关键词投入产出无法可视化,常常花了很多钱却不见具体的回报。

在竞争如此激烈的SEM市场中,企业需要一个高效的数据分析工具来尽可能地帮企业优化SEM推广,例如BDP,来帮企业节省不必要的支出,提升整体的经营绩效。

企业可借助数据平台提供的网络营销整合解决方案,打通各个搜索引擎营销(SEM)、在线客服系统和CRM系统,营销竞价人员无需掌握复杂的编程技术,简单拖拽即可生成报表,观察每一个关键词的投入和产出,分析每一个页面的转化,有效降低投放成本。

通过BDP实况分析数据,可以快速洞悉对手关键词的投放时段、地域及排名,并对其进行可视化的分析,实时监控自己和竞争对手的投放情况,了解对手的投放策略,支持自定义设置数据更新的时间点、监控频次和时段,及时调整策略。知已知彼,才能百战不殆。

6、大数据应用案例之:电商行业

意料之外:胸部最大的是新疆妹子。曾经淘宝平台显示,中国女性购买最多的文胸尺码为B罩杯。B罩杯占比达41.45%,其中又以75B的销量最好,其次是A罩杯,购买占比达25.26%,C罩杯只有8.96%。

虽然淘宝数据平台不能代表一切,但是结合现实来看,这个也具有普遍的代表性,只能感慨中国女性普遍size。在文胸颜色中,黑色最为畅销,黑色绝对是百搭,每个女性必备。

从省市排名,胸部最大的是新疆妹子。这些数据都对于文胸店铺而言是很好的参考,为店铺的库存、定价、款式选择等策略都有奠定数据基础。

7、大数据应用案例之:娱乐行业

微软大数据成功预测奥斯卡21项大奖。2013年,微软纽约研究院的经济学家大卫•罗斯柴尔德(David Rothschild)利用大数据成功预测24个奥斯卡奖项中的19个,成为人们津津乐道的话题。

今年罗斯柴尔德再接再厉,成功预测第86届奥斯卡金像奖颁奖典礼24个奖项中的21个,继续向人们展示现代科技的神奇魔力。

总的来说,大数据的终极目标并不仅仅是改变竞争环境,而是彻底扭转整个竞争环境,带来新机遇,企业需要应势而变。企业只有认识到这一点,使用合适的数据分析产品、聪明地使用和管理数据,才能在长期竞争中成为终极赢家。

F. 企业大数据实战案例

企业大数据实战案例

一、家电行业

以某家电公司为例,它除了做大家熟知的空调、冰箱、电饭煲外,还做智能家居,产品有成百上千种。在其集团架构中,IT部门与HR、财务等部门并列以事业部形式运作。

目前家电及消费电子行业正值“内忧外患”,产能过剩,价格战和同质化现象严重;互联网企业涉足,颠覆竞争模式,小米的“粉丝经济”,乐视的“平台+内容+终端+应用”,核心都是经营“用户”而不是生产。该公司希望打造极致产品和个性化的服务,将合适的产品通过合适的渠道推荐给合适的客户,但在CPC模型中当前只具备CP匹配(产品渠道),缺乏用户全景视图支持,无法打通“CP(客户产品)”以及“CC(客户渠道)”的匹配。

基于上述内外环境及业务驱动,该公司希望将大数据做成所有业务解决方案的枢纽。以大数据DMP作为企业数据核心,充分利用内部数据源、外部数据源,按照不同域组织企业数据,形成一个完整的企业数据资产。然后,利用此系统服务整个企业价值链中的各种应用。

那么问题来了,该公司的数据分散在不同的系统中,更多的互联网电商数据分散在各大电商平台,无法有效利用,怎么解决?该公司的应对策略是:1)先从外部互联网数据入手,引入大数据处理技术,一方面解决外部互联网电商数据利用短板,另一方面可以试水大数据技术,由于互联网数据不存在大量需要内部协调的问题,更容易快速出效果;2)建设DMP作为企业统一数据管理平台,整合内外部数据,进行用户画像构建用户全景视图。

一期建设内容:技术实现上通过定制Spark爬虫每天抓取互联网数据(主要是天猫、京东、国美、苏宁、淘宝上的用户评论等数据),利用Hadoop平台进行存储和语义分析处理,最后实现“行业分析”、“竞品分析”、“单品分析” 三大模块。

该家电公司大数据系统一期建设效果,迅速在市场洞察、品牌诊断、产品分析、用户反馈等方面得到体现。

二期建设目标:建设统一数据管理平台,整合公司内部系统数据、外部互联网数据(如电商数据)、第三方数据(如外部合作、塔布提供的第三方消费者数据等)。

该公司大数据项目对企业的最大价值是将沉淀的数据资产转化成生产力。IT部门,通过建设企业统一的数据管理平台,融合企业内外部数据,对于新应用快速支持,起到敏捷IT的作用;业务部门,通过产品、品牌、行业的洞察,辅助企业在产品设计、广告营销、服务优化等方面进行优化改进,帮助企业进行精细化运营,基于用户画像的精准营销和个性化推荐,帮助企业给用户打造极致服务体验,提升客户粘性和满意度;战略部门,通过市场和行业分析,帮助企业进行产品布局和战略部署。

二、快消行业

以宝洁为例,在与宝洁中国市场部的合作中发现,并不是一定要先整合内外部数据才能做用户画像和客户洞察。宝洁抓取了主流网站上所有与宝洁评价相关的数据,利用语义分析和建模,掌握不同消费群体的购物喜好和习惯,仅仅利用外部公开数据,快速实现了客户洞察。

此外,宝洁还在渠道管理上进行创新。利用互联网用户评论数据进行社群聆听,监控与宝洁合作的50个零售商店相关的用户评论,通过线上数据进行渠道/购物者研究并指导渠道管理优化。

实现过程:

1、锁定微博、大众点评等互联网数据源,采集百万级别消费者谈及的与宝洁购物相关内容;

2、利用自然语言处理技术,对用户评论进行多维建模,包括购物环境、服务、价值等10多个一级维度和50个二级维度,实现对用户评论的量化;

3、对沃尔玛、屈臣氏、京东等50个零售渠道进行持续监控,结果通过DashBoard和周期性分析报告呈现。

因此,宝洁能够关联企业内部数据,更有效掌握KA渠道整体情况,甚至进一步掌握KA渠道的关键细节、优势与劣势,指导渠道评级体系调整,帮助制定产品促销规划。

三、金融行业

对于消费金融来说,家电、快消的案例也是适用的,尤其是精准营销、产品推荐等方面。这里主要分享征信风控方面的应用。显然,互联网金融如果对小额贷款都像银行一样做实地考察,并投入大量人力进行分析评判的话,成本是很高的,所以就有了基于大数据的批量的信用评分模型。最终目的也是实现企业画像和企业中的关键人物画像,再利用数据挖掘、数据建模的方法建立授信模型。宜信的宜人贷、芝麻信用等本质上就是这个架构。

在与金融客户的接触中发现,不论银行还是金融公司,对外部数据的需求都越发迫切,尤其是外部强特征数据,比如失信记录、第三方授权后的记录、网络行为等。

以上是小编为大家分享的关于企业大数据实战案例的相关内容,更多信息可以关注环球青藤分享更多干货

G. 大数据时代,招商快车十大精准营销案例

大数据时代,招商快车十大精准营销案例

2015年,招商快车——中国最大全渠道大数据营销服务供应商大动作频频,先后与志高、蒙牛、迪士尼、茅台集团、太太乐、三九集团、长松咨询、上海证大、昂立教育、优速通达十大知名品牌达成深度战略合作——从企业营销代运营到大数据精准营销匹配服务。截止目前,招商快车销售额同比增长350%,一线合作企业占比60%,势态喜人。互联网+大数据时代的来临,招商快车勇于突破,敢于先行,DSP商机速配平台、DMP数据营销平台应运而生,全渠道大数据营销服务供应商驻足当代。

2015年是“互联网+”发展的元年,李克强总理在两会期间提出“互联网+”行动计划,互联网首次写入国家政策纲要,标志着互联网产业在新常态经济下的重要作用。随着互联网+战略的不断深化,大数据的话题在新媒体环境下裂变式传播,大数据一词也慢慢被大众所熟知,特别是在“云计算”和“物联网”的广泛应用,大数据的价值越来越受重视和关注。2015年9月5日,国务院发布的《促进大数据发展行动纲要》,全面推进大数据发展和应用;奥巴马的竞选团队依据选民的微博,实时分析选民对总统竞选人的喜好,无不标志着大数据时代的到来。

思路决定出路。大数据时代如山洪猛兽滚滚而来,招商快车基于超过2000万的渠道商、创业者精准数据库,截止日前,招商快车已完成超过2000万IT软硬件设备升级的投入,打造以DSP商机速配平台为核心、以DMP营销数据平台为有力支撑的两大超级平台。依托大数据营销智能化应用、服务,致力于为处于不同生命周期的中国企业,围绕营销及金融价值链中所产生的商业困惑,提供一站式商业模式定位、渠道系统建设、营销内核构造、营销教练、营销外包、O2O解决方案、全网营销、微商解决方案、DMP营销数据应用、DSP商机速配服务、金融增值服务等全渠道大数据营销服务。

十大精准营销案例。由于商业模式成功升级以及IT软硬件设备的成功导入,招商快车先后与志高、蒙牛、迪士尼、茅台集团、太太乐、三九集团、长松咨询、上海证大、昂立教育、优速通达十多家国内外知名企业达成深度合作,销售额同比增长350%,一线品牌企业客户占比60%,创下历史新高。

(2015招商快车十大经典案例)

以志高为例,招商快车结合双方知名度及影响力,为志高制定“互联网+家电+大数据营销”战略,一、提供营销拓展代运营服务;二、依托招商快车DMP营销数据平台为志高提供大数据营销配套;三、全渠道招商落地执行,帮助志高扩大国内外市场占有率,持续推进志高集团由“中国制造”向“中国创造”产业升级。

大数据时代背景下的全球经济,是一场以信息科技为核心的商业革命,它将颠覆传统经济形式、重构全球经济格局新兴产业链。招商快车成功升级商业模式,致力于帮助中国企业提高生产力、降低运营成本,减少运营盲区,使资源配置合理化,经济效益最大化,从而实现国民经济与商业价值的战略双赢。

以上是小编为大家分享的关于大数据时代,招商快车十大精准营销案例的相关内容,更多信息可以关注环球青藤分享更多干货

H. 目前大数据在哪些行业有案例或者说应用

大数据应用的关键,也是其必要条件,就在于"IT"与"经营"的融合,当然,这里的经营的内涵可以非常广泛,小至一个零售门店的经营,大至一个城市的经营。以下是关于各行各业,不同的组织机构在大数据方面的应用的案例,在此申明,以下案例均来源于网络,本文仅作引用,并在此基础上作简单的梳理和分类。
大数据应用案例之:医疗行业
Seton Healthcare是采用IBM最新沃森技术医疗保健内容分析预测的首个客户。该技术允许企业找到大量病人相关的临床医疗信息,通过大数据处理,更好地分析病人的信息。
在加拿大多伦多的一家医院,针对早产婴儿,每秒钟有超过3000次的数据读取。通过这些数据分析,医院能够提前知道哪些早产儿出现问题并且有针对性地采取措施,避免早产婴儿夭折。
它让更多的创业者更方便地开发产品,比如通过社交网络来收集数据的健康类App。也许未来数年后,它们搜集的数据能让医生给你的诊断变得更为精确,比方说不是通用的成人每日三次一次一片,而是检测到你的血液中药剂已经代谢完成会自动提醒你再次服药。
大数据应用案例之:能源行业
智能电网现在欧洲已经做到了终端,也就是所谓的智能电表。在德国,为了鼓励利用太阳能,会在家庭安装太阳能,除了卖电给你,当你的太阳能有多余电的时候还可以买回来。通过电网收集每隔五分钟或十分钟收集一次数据,收集来的这些数据可以用来预测客户的用电习惯等,从而推断出在未来2~3个月时间里,整个电网大概需要多少电。有了这个预测后,就可以向发电或者供电企业购买一定数量的电。因为电有点像期货一样,如果提前买就会比较便宜,买现货就比较贵。通过这个预测后,可以降低采购成本。
维斯塔斯风力系统,依靠的是BigInsights软件和IBM超级计算机,然后对气象数据进行分析,找出安装风力涡轮机和整个风电场最佳的地点。利用大数据,以往需要数周的分析工作,现在仅需要不足1小时便可完成。
大数据应用案例之:通信行业
XO Communications通过使用IBM SPSS预测分析软件,减少了将近一半的客户流失率。XO现在可以预测客户的行为,发现行为趋势,并找出存在缺陷的环节,从而帮助公司及时采取措施,保留客户。此外,IBM新的Netezza网络分析加速器,将通过提供单个端到端网络、服务、客户分析视图的可扩展平台,帮助通信企业制定更科学、合理决策。
电信业者透过数以千万计的客户资料,能分析出多种使用者行为和趋势,卖给需要的企业,这是全新的资料经济。
中国移动通过大数据分析,对企业运营的全业务进行针对性的监控、预警、跟踪。系统在第一时间自动捕捉市场变化,再以最快捷的方式推送给指定负责人,使他在最短时间内获知市场行情。
NTT docomo把手机位置信息和互联网上的信息结合起来,为顾客提供附近的餐饮店信息,接近末班车时间时,提供末班车信息服务。
大数据应用案例之:零售业
"我们的某个客户,是一家领先的专业时装零售商,通过当地的百货商店、网络及其邮购目录业务为客户提供服务。公司希望向客户提供差异化服务,如何定位公司的差异化,他们通过从 Twitter 和 Facebook 上收集社交信息,更深入的理解化妆品的营销模式,随后他们认识到必须保留两类有价值的客户:高消费者和高影响者。希望通过接受免费化妆服务,让用户进行口碑宣传,这是交易数据与交互数据的完美结合,为业务挑战提供了解决方案。"Informatica的技术帮助这家零售商用社交平台上的数据充实了客户主数据,使他的业务服务更具有目标性。
零售企业也监控客户的店内走动情况以及与商品的互动。它们将这些数据与交易记录相结合来展开分析,从而在销售哪些商品、如何摆放货品以及何时调整售价上给出意见,此类方法已经帮助某领先零售企业减少了17%的存货,同时在保持市场份额的前提下,增加了高利润率自有品牌商品的比例。

I. 大数据如何与零售业结合 在实战中应用

大数据如何与零售业结合 在实战中应用

一、“大数据”的商业价值

1、对顾客群体细分

“大数据”可以对顾客群体细分,然后对每个群体量体裁衣般的采取独特的行动。瞄准特定的顾客群体来进行营销和服务是商家一直以来的追求。云存储的海量数据和“大数据”的分析技术使得对消费者的实时和极端的细分有了成本效率极高的可能。

2、模拟实境

运用“大数据”模拟实境,发掘新的需求和提高投入的回报率。现在越来越多的产品中都装有传感器,汽车和智能手机的普及使得可收集数据呈现爆炸性增长。Blog、Twitter、Facebook和微博等社交网络也在产生着海量的数据。

云计算和“大数据”分析技术使得商家可以在成本效率较高的情况下,实时地把这些数据连同交易行为的数据进行储存和分析。交易过程、产品使用和人类行为都可以数据化。“大数据”技术可以把这些数据整合起来进行数据挖掘,从而在某些情况下通过模型模拟来判断不同变量(比如不同地区不同促销方案)的情况下何种方案投入回报最高。

3、提高投入回报率

提高“大数据”成果在各相关部门的分享程度,提高整个管理链条和产业链条的投入回报率。“大数据”能力强的部门可以通过云计算、互联网和内部搜索引擎把”大数据”成果和“大数据”能力比较薄弱的部门分享,帮助他们利用“大数据”创造商业价值。

4、数据存储空间出租

企业和个人有着海量信息存储的需求,只有将数据妥善存储,才有可能进一步挖掘其潜在价值。具体而言,这块业务模式又可以细分为针对个人文件存储和针对企业用户两大类。主要是通过易于使用的API,用户可以方便地将各种数据对象放在云端,然后再像使用水、电一样按用量收费。目前已有多个公司推出相应服务,如亚马逊、网易、诺基亚等。运营商也推出了相应的服务,如中国移动的彩云业务。

5、管理客户关系

客户管理应用的目的是根据客户的属性(包括自然属性和行为属性),从不同角度深层次分析客户、了解客户,以此增加新的客户、提高客户的忠诚度、降低客户流失率、提高客户消费等。 对中小客户来说,专门的CRM显然大而贵。不少中小商家将飞信作为初级CRM来使用。比如把老客户加到飞信群里,在群朋友圈里发布新产品预告、特价销售通知,完成售前售后服务等。

6、个性化精准推荐

在运营商内部,根据用户喜好推荐各类业务或应用是常见的,比如应用商店软件推荐、IPTV视频节目推荐等,而通过关联算法、文本摘要抽取、情感分析等智能分析算法后,可以将之延伸到商用化服务,利用数据挖掘技术帮助客户进行精准营销,今后盈利可以来自于客户增值部分的分成。

以日常的“垃圾短信”为例,信息并不都是“垃圾”,因为收到的人并不需要而被视为垃圾。通过用户行为数据进行分析后,可以给需要的人发送需要的信息,这样“垃圾短信”就成了有价值的信息。在日本的麦当劳,用户在手机上下载优惠券,再去餐厅用运营商DoCoMo的手机钱包优惠支付。运营商和麦当劳搜集相关消费信息,例如经常买什么汉堡,去哪个店消费,消费频次多少,然后精准推送优惠券给用户。

7、数据搜索

数据搜索是一个并不新鲜的应用,随着“大数据”时代的到来,实时性、全范围搜索的需求也就变得越来越强烈。我们需要能搜索各种社交网络、用户行为等数据。其商业应用价值是将实时的数据处理与分析和广告联系起来,即实时广告业务和应用内移动广告的社交服务。

运营商掌握的用户网上行为信息,使得所获取的数据“具备更全面维度”,更具商业价值。典型应用如中国移动的“盘古搜索”。

二、“大数据”与零售业的结合运用

对于数据的使用,许多实体零售商同样表示非常重视,他们对企业积累的数据进行了各种预测和分析。然而,对具体的销售业务来说,往往存在理想与现实的纠结,前不久市场中一家知名的服装零售企业一方面在宣传盈利上市的同时,一方面曝出有近10亿元的库存。国内很多零售企业都知道“大数据”应用的好处,但他们一旦将“大数据”的应用结合到自己的企业经营中时,便会出现与目前经营有非常大的不适应问题,如此导致许多企业对此都持非常谨慎的态度。

1、将零售策略与“大数据”技术进行结合

零售企业谈的“大数据”的最大价值,是在零售策略上与“大数据”技术进行结合,最大程度地编制前置性的零售策略,确保销售计划的实现。“大数据”讲究四个“V”:一是数据体量大(Volume);二是数据类型复杂(Variety),多涉及到各种结构性与非结构性的;三是价值密度低(Value),这和体量大是相对应的;四是数据更新与处理速度快(Velocity)。

根据这些特性主动地在业务数据产生的同时做出相应的策略应对,会为企业赢得更多的时间和市场策略调整空间。这类似于大江大河的洪峰预警,上游的洪峰出现什么状况,下游要做什么样的应对。数据用到这一层面上,才具有直接的业务价值,这不是那种销量同期比、环比、销售计划比数据能指导业务的价值能相比的。例如一家涉足线上业务的实体零售商,在一组货品的15分钟促销时间内,往往准备着3套应变策略,以确保货品能够按计划卖出。

在实体商业领域,有许多关于数据与营销的案例。一个较早的版本就是美国沃尔玛啤酒和尿布的数据关系。原来,美国的妇女在家照顾孩子,所以她们会嘱咐丈夫在下班回家的路上为孩子买尿布,而丈夫在买尿布的同时又会顺手购买自己爱喝的啤酒。

当分析师了解到啤酒和尿布销量存在正相关关系、并进一步分析的时候,发现了这样的购买情境,于是将这两种属于不同门类的商品摆在一起。这个发现为商家带来了新的销售组合。当然,即使再多的零售连锁企业知道这个故事,也极少从平时销售中能发现这样的组合,哪怕是牵强附会的。

所以,零售策略设计是零售业“大数据”价值最大的地方,也是“大数据”可以直接为其提供支持的业务。

2、零售企业对“大数据”应保持正确态度

企业的领导者首先要重视“大数据”的发展、重视企业的数据中心,把收集顾客数据作为企业营销运营的第一目标;第二,对企业内部人员进行培训及建立收集数据的软硬件机制;第三,以业务需求为准则,确定哪些数据是需要收集的;第四,确认在企业已有的数据基础上或者未来方向前提下,如何达成前三项目标的基础建设方案。

在这些IT基础工作需要企业有实实在在的投入和建设规范的信息化团队,作为中国商业最大的一分子——中小微型零售企业似乎是不可能也没有足够的能力来面对这样一场变化的。

大中型零售商因为本身业务及利润的积淀,已经能够承担这样一场需求趋势的需要成本。中小微型企业还处于快速发展过程中,如果也如同大中型企业进行全方面的投入,将很快会被新型的IT工具拖垮或者遭受重创。

但这并不意味着中小零售企业没有机会,实际上IT的发展为所有的企业都提供了平等的选择,云计算的广泛应用即是对这样一场变革带来的临时礼物。

作为中小微型零售企业,完全不必考虑自己建设一套“大数据”的IT系统,他们从精力、成本、能力上来说都不适合,因此此类企业可以将企业的IT建设外包给适合的服务商,企业本身的所有精力可以投入到对商圈的开发上。

目前,一些IT软件开发运营商也已经针对传统零售企业推出了云服务的基础平台,为中小微型商业企业提供了大型企业和超大型企业同样的基础环境及系统架构,小企业只需清晰地规划出自己的目标和适合的步骤,使用云平台按需付费即可,大可不必进行巨大的初始投入和不可预测的运行成本。

三、“大数据”在零售企业实战中的应用

1、Target

最早关于“大数据”的故事发生在美国第二大的超市塔吉特百货(Target)。孕妇对于零售商来说是个含金量很高的顾客群体。但是他们一般会去专门的孕妇商店而不是在Target购买孕期用品。人们一提起Target,往往想到的都是清洁用品、袜子和手纸之类的日常生活用品,却忽视了Target有孕妇需要的一切。为此,Target的市场营销人员求助于Target的顾客数据分析部要求建立一个模型,在孕妇第2个妊娠期就把她们给确认出来。在美国出生记录是公开的,等孩子出生了,新生儿母亲就会被铺天盖地的产品优惠广告包围,因此必须赶在孕妇第2个妊娠期行动起来。如果Target能够赶在所有零售商之前知道哪位顾客怀孕了,市场营销部门就可以早早的给他们发出量身定制的孕妇优惠广告,早早圈定宝贵的顾客资源。

如何能够准确地判断哪位顾客怀孕? Target想到公司有一个迎婴聚会(baby shower)的登记表,开始对这些登记表里的顾客的消费数据进行建模分析,不久就发现了许多非常有用的数据模式。比如模型发现,许多孕妇在第2个妊娠期的开始会买许多大包装的无香味护手霜;在怀孕的最初20周大量购买补充钙、镁、锌的善存片之类的保健品。最后Target选出了25种典型商品的消费数据构建了“怀孕预测指数”,通过这个指数,Target能够在很小的误差范围内预测到顾客的怀孕情况,因此Target就能早早地把孕妇优惠广告寄发给顾客。

为了不让顾客觉得商家侵犯了自己的隐私,Target把孕妇用品的优惠广告夹杂在其他一大堆与怀孕不相关的商品优惠广告当中。

根据这个“大数据”模型,Target制订了全新的广告营销方案,结果Target的孕期用品销售呈现了爆炸性的增长。Target的“大数据”分析技术从孕妇这个细分顾客群开始向其他各种细分客户群推广,从Target使用“大数据”的2002年到2010年间,Target的销售额从440亿美元增长到了670亿美元。

2、ZARA

ZARA平均每件服装价格只有LVHM四分之一,但是,回看两家公司的财务年报,ZARA税前毛利率比LVHM集团还高23、6%。

(1)分析顾客的需求

在ZARA的门店里,柜台和店内各角落都装有摄影机,店经理随身带着PDA。目的是记录其顾客的每个意见,如顾客对衣服图案的偏好,扣子的大小,拉链的款式之类的微小举动。店员会向分店经理汇报,经理上传到ZARA内部全球资讯网络中,每天至少两次传递资讯给总部设计人员,由总部作出决策后立即传送到生产线,改变产品样式。

关店后,销售人员结帐、盘点每天货品上下架情况,并对客人购买与退货率做出统计。再结合柜台现金资料,交易系统做出当日成交分析报告,分析当日产品热销排名,然后,数据直达ZARA仓储系统 。

收集海量的顾客意见,以此做出生产销售决策,这样的作法大大降低了存货率。同时,根据这些电话和电脑数据,ZARA分析出相似的“区域流行”,在颜色、版型的生产中,做出最靠近客户需求的市场区隔。

(2)结合线上店数据

2010年,ZARA同时在六个欧洲国家成立网络商店,增加了网络巨量资料的串连性。2011年,分别在美国、日本推出网络平台,除了增加营收,线上商店强化了双向搜寻引擎、资料分析的功能。不仅回收意见给生产端,让决策者精准找出目标市场;也对消费者提供更准确的时尚讯息,双方都能享受“大数据”带来的好处。分析师预估,网络商店为ZARA至少提升了10%营收。

此外,线上商店除了交易行为,也是活动产品上市前的营销试金石。ZARA通常先在网络上举办消费者意见调查,再从网络回馈中,撷取顾客意见,以此改善实际出货的产品。

ZARA将网络上的海量资料看作实体店面的前测指标。因为会在网络上搜寻时尚资讯的人,对服饰的喜好、资讯的掌握,催生潮流的能力,比一般大众更前卫。再者,会在网络上抢先得知ZARA资讯的消费者,进实体店面消费的比率也很高。

这些顾客资料,除了应用在生产端,同时被整个ZARA所属的英德斯(Inditex)集团各部门运用:包含客服中心、行销部、设计团队、生产线和通路等。根据这些巨量资料,形成各部门的KPI,完成ZARA内部的垂直整合主轴。

ZARA推行的海量资料整合,后来被ZARA所属英德斯集团底下八个品牌学习应用。可以预见未来的时尚圈,除了台面上的设计能力,台面下的资讯/数据大战,将是更重要的隐形战场。

(3)对数据快速处理、修正、执行

H&M一直想跟上ZARA的脚步,积极利用“大数据”改善产品流程,成效却不彰,两者差距愈拉愈大,这是为什么?

主要的原因是,“大数据”最重要功能是缩短生产时间,让生产端依照顾客意见,能于第一时间迅速修正。但是,H&M内部的管理流程,却无法支撑“大数据”供应的庞大资讯。H&M的供应链中,从打版到出货,需要三个月左右,完全不能与ZARA两周的时间相比。

因为H&M不像ZARA,后者设计生产近半维持在西班牙国内,而H&M产地分散到亚洲、中南美洲各地。跨国沟通的时间,拉长了生产的时间成本。如此一来,“大数据”即使当天反映了各区顾客意见,无法立即改善,资讯和生产分离的结果,让H&M内部的“大数据”系统功效受到限制。

“大数据”运营要成功的关键,是资讯系统要能与决策流程紧密结合,迅速对消费者的需求作出回应、修正,并且立刻执行决策。

3、亚马逊

此前亚马逊并未大张旗鼓推展广告业务,直至2012年年底,有报道指出,亚马逊即将推出实时广告交易平台,从而向Facebook和谷歌发起挑战。这个实时广告交易平台又称“需求方平台”(Demand Side Platform,DSP),可以让广告与目标消费者相遇。广告商可以在“需求方平台”上竞标网站的闲置广告空间,而竞标标的包括广告版位,以及符合特定条件的消费者。

亚马逊开发的“需求方平台”可以“协助广告商接触网路上的众多用户,同时也帮助客户迅速找到想购买产品的相关资讯”,“需求方平台”概念虽非亚马逊首创,但以丰富资料为后盾。

亚马逊与广告商分享的资讯有两类,一是依用户网路行为所做的通用分类,例如热衷时尚、喜爱电子产品、身份为母亲、爱喝咖啡等,二是用户的商品搜寻记录。至于消费者的实际购物资料,亚马逊似乎尚未列入分享。广告商即使无法得知实际消费记录,能了解潜在顾客的商品搜寻记录;亚马逊如果全力进军网路广告市场,仍可能大大改变产业生态。

亚马逊2012年的广告收入约为5亿美元, 2013年的广告收入将达10亿美元。这会成为亚马逊未来几年内营收增长的新动力,更重要的是,它可能是亚马逊各项业务中利润率最高的业务之一。

4、沃尔玛

2011年,沃尔玛电子商务的营收仅是亚马逊的五分之一,且差距年年扩大,让沃尔玛不得不设法奋起直追,找出各种提升数字营收的模式。最终,沃尔玛选择在社交网站的移动商务上放手一搏,让更大量、迅速的资讯,进入沃尔玛内部销售决策。沃尔玛的每张购买建议清单,都是大量资料运算而出的结果。

2011年4月,沃尔玛以3亿美元高价收购了一家专长分类社群网站Kosmix。Kosmix不仅能收集、分析网络上的海量资料(大数据)给企业,还能将这些资讯个人化,提供采购建议给终端消费者(若不是追踪结帐资料,这些细微的消费者习惯,很难从卖场巡逻中发现)。这意味着,沃尔玛使用的“大数据”模式,已经从“挖掘”顾客需求进展到要能够“创造”消费需求。

沃尔玛本身就是一个海量资料系统,适用各种商业上的分析行为,它的综合功能,作为世界最大的零售业(专题阅读)巨人,沃尔玛在全球超过200万名员工,总共有110个超大型配送中心,每天处理的资料量超过10亿笔。由于资料量过于庞大,沃尔玛的“大数据”系统最重要的任务,就是在做出每一笔决定前,将执行成本降到最低,并且创造新的消费机会。

Kosmix为沃尔玛打造的“大数据”系统称做“社交基因组(Social Genome)”,连结到Twitter、Facebook等社交媒体。工程师从每天热门消息中,推出与社会时事呼应的商品,创造消费需求。分类范围包含消费者、新闻事件、产品、地区、组织和新闻议题等。同时,针对社交网络快消息流的性质,沃尔玛内部的“大数据”实验室专门发展出一套追踪系统,结合手机上网,专门管理追踪庞大的社交动态,每天能处理的资讯量超过10亿笔。

“社交基因组”的应用方式五花八门。举例来说,沃尔玛实验室内部软件能从Foursquare平台上的打卡记录,分析出在黑色星期五,不同地区消费者最常购买的品项,然后,针对不同地区送出购买建议。

以上是小编为大家分享的关于大数据如何与零售业结合 在实战中应用的相关内容,更多信息可以关注环球青藤分享更多干货

J. 扒扒跟大数据有关的那些事儿

扒扒跟大数据有关的那些事儿

如今,业界和学术界一直在讨论一个词,那就是大数据。不管是学术圈还是IT圈,只要能谈论点儿大数据就显得很高大上。然而,大数据挖掘、大数据分析、大数据营销等等事情仅仅只是个开始,对大多数公司来说,大数据仍有很强的神秘色彩。于是,在我们还没有完全搞明白如何运用大数据进行挖掘时,各种过于神化大数据的舆论就已经不绝于耳了。当然,也有很多人直接批判大数据或大数据营销给我们造成的隐私威胁。也有很多人根本没有搞清楚什么是大数据,到底有什么价值。
于是,站在客观的角度,围绕下面几个问题与大家分享有关大数据的几个观点,也扒扒大数据的那些事儿:1、大数据营销和个人隐私泄露究竟有无因果和逻辑关系?
2、大数据营销到底能带给企业什么样的价值?到底能带给用户什么价值?用户是否全盘否定或反感大数据营销?
3、如何正确看待大数据?如何看待大数据和传统调查方法或统计学的关系?
4、大数据营销究竟面临什么样的挑战?
一、大数据的迅猛发展与数据隐私的忧虑相伴而生
社交媒体的出现,让用户数据的分享数量达到了难以估量的程度。而如今,社交媒体的种类有增无减,智能手机的更大普及,又让更多用户转移到移动互联网,从而又进一步贡献更多数据和内容。这样的数据增量让全球社交媒体的收入大涨,仅根据咨询公司Gartner2012年的研究结果显示,2012年全球社交媒体收入估计达到169亿美元。
一边是社交媒体因为大数据的盆钵满载,另一方面则是用户不断毫无保留的将个人信息交给互联网,这些信息包括年龄、性别、地域、生活状态、态度、行踪、兴趣爱好、消费行为、健康状况甚至是性取向等。一时间,针对海量用户信息的大数据挖掘、大数据分析、大数据精准营销、广告精准投放等等迅速被各大公司提上日程。
比如,一个发生在美国的真实故事就会告诉我们,利用数据挖掘如何掌握我们的行踪。一个美国家庭收到了一家商场投送的关于孕妇用品的促销劵,促销劵很明显是给给家中那位16岁女孩的。女孩的父亲很生气,并找商场讨说法。但几天后,这位父亲发现,16岁的女儿真怀孕了。而商场之所以未卜先知,正是通过若干商品的大量消费数据来预估顾客的怀孕情况。
类似的大数据挖掘和营销事件在今天更多的发生,尤其是社交媒体产生大量数据后。于是,许多人对个人隐私数据开始担忧,开始批判大数据精准营销侵犯了个人隐私,忧虑我们进入了大数据失控的时代,并将原因更多归结于社交媒体。
二、大数据营销和个人隐私泄露之间不能完全划等号!逻辑关系不成立!
如果客观的分析一下上述问题就会发现,这是一个难以分说的鸡生蛋还是蛋生鸡的问题。一味地批判大数据分析对个人用户数据的泄露或滥用是不客观的。
因为,社交媒体的本质在于分享和传播,社交媒体的出现的确满足了人们分享个人信息、晒各种数据的欲望,让人们在过去无声无息的生活中突然转移到了可以让全世界看到自己的平台上来。人们从而达到了内心的满足感和存在感。因此,单从个体的背后心理来考虑,社交媒体对他们来说是有益的,他们不认为自己贡献的是不可告人的秘密,既然分享出来,那一定是希望或允许别人看到的。因此,这是一种无形的默许的交易,用户乐意把自己的各种琐碎细节暴露于社交媒体,而对社交媒体上杂乱无章的海量用户数据进行有序的分类和分析也没有什么不妥。
当然,如果社交媒体平台随意滥用或泄露用户的后台数据,比如个人联系方式、家庭住址、银行等极为隐秘的信息,这的确是赤裸的侵犯隐私的行为,极其没有道德,必须要受到谴责和法律制裁。
但目前,许多大数据精准营销的前提是对用户在互联网上留下的公开显在的信息进行算法归类和内容分析,从而对海量用户进行人群划分,或者对小众群体进一步细分化,甚至达到某种程度上针对单个人的个性化定制,最终达到精准推送广告或有针对性推出营销活动的目的。
所以,从这个角度来看,大数据精准营销与个人主动分享和传播到网络上的信息数据之间并没有矛盾。人们起初或许会惊讶:为什么他们知道我想买什么?为什么他们知道我的需求?但随着“猜透心思”的推送行为让人们的生活越来越便利时,比如省去大量搜索、查找和对比产品或服务的时间,他们可能会十分习惯并依赖这种精准性,并不会在意他们本来就随意分享到网络上的杂乱信息被如何挖掘和利用。
因此,用户发布和分享的信息是否为隐私,在用户分享信息之前就做过慎重考量和筛选。这一点非常重要,这是侵犯隐私与否的界限。那些被用户选择为不适合发布或不希望别人知道的信息就是用户认为的隐私,而那些已经公开发布到社交媒体或网络上的信息则被用户认为是可以传播的。
所以,普通的对海量公开信息的分析、挖掘、归类,从而进行精准营销的大数据行为不能一味被骂成是对用户利益的损害。而那些对用户存储在某些位置、不希望被他人了解的信息(私人存储的信息)如果被别有用心的人泄露或利用,那这就是隐私侵犯行为。但这就不能归罪于大数据,而应质问存贮平台的安全性问题。
因此,我们不能过分解读大数据精准营销。其实,问题的本质在于,人们是否真的在意杂乱信息的去向(涉及到分享信息的背后心理和动机)?以及大数据营销是否真的触碰了人们不可告人的秘密或底线(需要对秘密和底线重新定义)?因为,如果人们默认分享的都是公开的,那么侵犯隐私的概念就是不成立的。如果人们有不希望别人知道的信息,也不会贸然在网络上分享和传播。
三、大数据营销究竟会给企业和用户带来什么价值?
讨论完上面的问题之后,我们是否应该诚恳对待大数据精准营销这件事?那么大数据营销究竟对于企业和用户两方面来说,都有什么样的价值?
1、对于企业的价值
让我们先看一个国外案例:
我们都知道美剧《纸牌屋》,提到《纸牌屋》的成功,最大的功劳便是大数据分析。因此,《纸牌屋》几乎成了大数据营销的经典案例,也是美国Netflix公司基于用户信息挖掘来决定内容生产的成功尝试。
Netflix的订阅用户达到了3000万左右,而大多数用户的观影都与精准推荐系统有关。Netflix会定时收集并分析用户观看电影或电视剧的行为,比如根据用户对电影的评分、用户的分享行为、用户的观影记录等信息去分析用户的收看习惯,从而推断用户喜欢什么样的影视剧,喜欢什么样的风格,喜欢什么样的导演和演员。在此基础上利用算法对用户感兴趣的视频进行推荐排序,直到用户找到最喜欢的影视剧。《纸牌屋》的导演和主演就是Netflix挖掘用户信息后的预测出来的。
那我们再看一个国内案例:
我们都知道阿里巴巴和新浪微博合作的事情,阿里巴巴斥资5.86亿入股新浪微博。除了网络上各大媒体分析的,认为阿里巴巴希望打造生态圈、强化流量入口、挑战腾讯等等原因之外,还有一个重要原因或许就是大数据营销的战略。
如今各大互联网大佬都在跑马圈地,圈住用户,谁能圈住用户,让用户在其平台上活跃,谁就掌握了用户的大量信息(包括显在的前台信息和隐藏的后台信息)。新浪微博在中国有几亿用户,这个量十分庞大,但如果新浪不能把这些用户产生的信息合理的利用,那么这些资源就是巨大的浪费。我们再看阿里巴巴,中国最大电商平台,它有产品,但是却没有完整的用户日常生活行为信息,只有购买信息,但这些购买信息不足以了解人群特点和喜好。所以,只有跟新浪微博合作,掌握大量用户的行为信息,从而对其分类,找到不同人群甚至不同个体的喜好、偏好、兴趣、爱好、习惯、传播习惯、分享路径等等,那么就能实现精准营销,甚至还可以通过不同用户的信息传播规律,而制定产品的最佳品牌传播途径。这是一座巨大的金矿。
新浪微博和阿里巴巴合作后,微博上出现了一些产品推荐信息,同时新浪微博已经推出支付功能。可以想象:未来你在微博上看到相关推荐的产品,恰好是你喜欢的产品,那么你就可以直接在微博上实现支付和购买。从而新浪微博和阿里巴巴各取所需,共享收益。当然,这是我个人的观察和分析,不过阿里巴巴的大数据战略也很明显了。
2、对于用户的价值
上述两个例子说的都是大数据带给企业的价值,那么,大数据营销对于用户来说,到底有没有价值?用户是否十分反感精准营销?让我们再来看看一个新的调查数据:
中国传媒大学国家广告研究院刚刚发布一份《2014中美移动互联网发展报告》,这份调查报告对比了中美两国用户移动互联网的使用习惯,以及移动用户对于移动广告的态度。
调查显示,最可能得到智能终端用户回应的广告内容为:(1)与用户要购买物品相关的广告(2)与要购买物品相关的优惠券(3)搞笑的广告(4)与用户最喜爱品牌相关的广告(5)与用户在线上访问过网站或使用过的应用相关的广告(6)与最近线上购物相关的广告(7)与用户所在场所相关的广告(8)与最近收听、收看的广播/电视相关的广告。(占比>=20%)
从这些数据我们可以看出,在8个结果中,有6个都是跟大数据精准营销扯上关系的。比如,与用户要购买物品相关的广告,更能引起用户的回应或互动。如何理解?大数据营销的前提就是计算并推测用户的真实需求,看用户需要购买什么相关产品,然后给用户直接推送用户想要的、喜欢的,做到了精准到达。那么用户呢?用户乐意对这样的推动广告或产品做出回应,因为这些广告少了对用户的打扰,并且让用户费劲心思对对比或货比三家后才购买的决策过程降低,节省了时间,让用户直接找到内心真正所需的产品或服务。
所以,这样的结果就表明,大数据精准营销并不是完全都会让用户反感,而是看你猜透用户心思的程度。因此,如果你推送的内容和用户想要购买的物品相关,与用户最喜爱的品牌相关等等。那么这种精准挖掘并不会受到用户的反感,反而会给用户带来便利。

以上是小编为大家分享的关于扒扒跟大数据有关的那些事儿的相关内容,更多信息可以关注环球青藤分享更多干货

阅读全文

与大数据对企业营销案例相关的资料

热点内容
海鲜店宣传方案策划 浏览:721
深圳市慢跑活动策划方案 浏览:210
市场营销安全总结 浏览:257
市场营销部笔试试题 浏览:163
市场营销与销售推销广告的关系 浏览:578
娃哈哈广告营销策划方案 浏览:843
食品市场营销策划重点 浏览:969
诺基亚手机推广方案 浏览:405
言传身教培训方案 浏览:361
关于品牌和营销的名言 浏览:161
旅游业中的市场营销 浏览:64
疾控中心新进人员培训方案 浏览:541
市场营销推销产品案例 浏览:417
市场促销活动宣传报道 浏览:122
企业营销方案范文 浏览:340
电子商务平台的模式 浏览:562
电子商务营销规划书 浏览:906
中国农村电子商务发展报告 浏览:914
中粮食品的营销方案 浏览:929
花店节日促销活动怎么做 浏览:239