❶ 九年级数学下二次函数质量检测试题
一、选择题
1.二次函数y=-x2+2x+2化为y=a(x-h)2+k的形式,下列正确的是( )
A. y=-(x-1)2+2 B. y=-(x-1)2+3 C. y=(x-2)2+2 D. y=(x-2)2+4
2.抛物线y=(x-2)2+5的顶点坐标是( )
A. (-2,5) B. (2,5) C. (-2,-5) D. (2,-5)
3.把抛物线y=-x2向左平移1个单位长度,然后向上平移3个单位长度,则平移后抛物线的解析式为( )
A.y=-(x-1)²-3 B.y=-(x+1)²-3 C.y=-(x-1)²+3 D.y=-(x+1)²+3
4.小明从图所示的二次函数 的图象中,观察得出了下面四条信息:① ;② <0;③ ;④方程 必有一个根在-1到0之间.你认为其中正确信息的个数有( )
A.1个 B.2个 C.3个 D.4个
5.已知二次函数的图象(﹣0.7≤x≤2)如图所示、关于该函数在所给自变量x的取值范围内,下列说法正确的是( )
A. 有最小值1,有最大值2 B. 有最小值-1,有最大值1
C. 有最小值-1,有最大值2 D. 有最小值-1,无最大值
x … ﹣5 ﹣4 ﹣3 ﹣2 ﹣1 0 …
y … 4 0 ﹣2 ﹣2 0 4 …
6.二次函数 ,自变量x与函数y的对应值如下表:
则下列说法正确的是( )
A. 抛物线的开口向下 B. 当x> 时,y随x的增大而增大
C. 二次函数的最小值是 D. 抛物线的对称轴是x=
7.二次函数y=ax2+bx+c的图象如图所示,反比例函数 与正比例函数y=bx在同一坐标系内的大致图象是( )
A. B. C. D.
8.如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是( )
9.二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为( )
A.﹣3 B.3 C.﹣6 D.9
10.已知二次函数y=kx2﹣5x﹣5的图象与x轴有交点,则k的取值范围是( )
A.k>- B.k - 且k≠0 C.k - D.k>- 且k≠0
评卷人 得分
二、填空题
11.已知抛物线y=x2﹣(k+1)x+4的顶点在x轴上,则k的值是 .
12.如图,抛物线y=ax2+bx+c与x轴的一个交点是A(1,0),对称轴为直线x=﹣1,则一元二次方程ax2+bx+c=0的解是 .
13.利用图象法求方程的解,体现了数形结合的方法,它是将方程的解看成两个函数图象交点的横坐标.若关于x的方程x2+a﹣ =0(a>0)只有一个整数解,则a的值等于 .
14.已知抛物线p:y= +bx+c的顶点为C,与x轴相交于A、B两点(点A在点B左侧),点C关于x轴的对称点为C′,我们称以A为顶点且过点C′,对称轴与y轴平行的抛物线为抛物线p的“梦之星”抛物线,直线AC′为抛物线p的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y= +2x+1和y=2x+2,则这条抛物线的解析式为 .
评卷人 得分
三、解答题
15.已知:关于x的方程:mx2﹣(3m﹣1)x+2m﹣2=0.
(1)求证:无论m取何值时,方程恒有实数根;
(2)若关于x的二次函数y=mx2﹣(3m﹣1)x+2m﹣2的图象与x轴两交点间的距离为2时,求抛物线的解析式.
16.如图,抛物线y=ax2+bx+c经过A(﹣4,0)、B(1,0)、C(0,3)三点,直线y=mx+n经过A(﹣4,0)、C(0,3)两点.
(1)写出方程ax2+bx+c=0的解;
(2)若ax2+bx+c>mx+n,写出x的取值范围.
17.已知抛物线y=x2﹣2x﹣8.
(1)用配方法把y=x2﹣2x﹣8化为y=(x﹣h)2+k形式;
(2)并指出:抛物线的顶点坐标是 ,抛物线的对称轴方程是 ,抛物线与x轴交点坐标是 ,当x 时,y随x的增大而增大.
18.在平面直角坐标系xOy中,抛物线y=﹣x2+2mx﹣m2+1的对称轴是直线x=1.
(1)求抛物线的表达式;
(2)点D(n,y1),E(3,y2)在抛物线上,若y1<y2,请直接写出n的取值范围; p=""> </y2,请直接写出n的取值范围;>
(3)设点M(p,q)为抛物线上的一个动点,当﹣1<p<2时,点m关于y轴的对称点都在直线y=kx﹣4的上方,求k的取值范围. p=""> </p<2时,点m关于y轴的对称点都在直线y=kx﹣4的上方,求k的取值范围.>
19.根据下列要求,解答相关问题.
(1)请补全以下求不等式﹣2x2﹣4x>0的解集的过程.
①构造函数,画出图象:根据不等式特征构造二次函数y=﹣2x2﹣4x;并在下面的坐标系中(图1)画出二次函数y=﹣2x2﹣4x的图象(只画出图象即可).
②求得界点,标示所需,当y=0时,求得方程﹣2x2﹣4x=0的解为 ;并用锯齿线标示出函数y=﹣2x2﹣4x图象中y>0的部分.
③借助图象,写出解集:由所标示图象,可得不等式﹣2x2﹣4x>0的解集为﹣2<x<0.请你利用上面求一元一次不等式解集的过程,求不等式x2﹣2x+1≥4的解集. p=""> </x<0.请你利用上面求一元一次不等式解集的过程,求不等式x2﹣2x+1≥4的解集.>
20.若两个二次函数图象的顶点,开口方向都相同,则称这两个二次函数为“同簇二次函数”.
(1)请写出两个为“同簇二次函数”的函数;
(2)已知关于x的二次函数y1=2x2﹣4mx+2m2+1,和y2=x2+bx+c,其中y1的图象经过点A(1,1),若y1+y2为y1为“同簇二次函数”,求函数y2的表达式,并求当0≤x≤3时,y2的取值范围.
21.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:
时间x(天) 1≤x<50 50≤x≤90
售价(元/件) x+40 90
每天销量(件) 200﹣2x
已知该商品的进价为每件30元,设销售该商品的每天利润为y元.
(1)求出y与x的函数关系式;
(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?
(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.
22.如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C、D两点.点P是x轴上的一个动点.
(1)求此抛物线的解析式;
(2)求C、D两点坐标及△BCD的面积;
(3)若点P在x轴上方的抛物线上,满足S△PCD= S△BCD,求点P的坐标.
23.如图1,在△ABC中,∠A=120°,AB=AC,点P、Q同时从点B出发,以相同的速度分别沿折线B→A→C、射线BC运动,连接PQ.当点P到达点C时,点P、Q同时停止运动.设BQ=x,△BPQ与△ABC重叠部分的面积为S.如图2是S关于x的函数图象(其中0≤x≤8,8<x≤m,m<x≤16时,函数的解析式不同). p=""> </x≤m,m<x≤16时,函数的解析式不同).>
(1)填空:m的值为 ;
(2)求S关于x的函数关系式,并写出x的取值范围;
(3)请直接写出△PCQ为等腰三角形时x的值.
24.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点左侧,B点的坐标为(4,0),与y轴交于C(0,﹣4)点,点P是直线BC下方的抛物线上一动点.
(1)求这个二次函数的表达式.
(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.
(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.
参考答案
1.B
2.B
3.D
4.C
5.C
6.D
7.B
8.A
9.B.
10.B
11.3或﹣5.
12.x1=1,x2=﹣3.
13.3.
14.y= ﹣2x﹣3.
15.解:(1)、①当m=0时,原方程可化为x﹣2=0,解得x=2;②当m≠0时,方程为一元二次方程,
△=[﹣(3m﹣1)]2﹣4m(2m﹣2) =m2+2m+1 =(m+1)2≥0,故方程有两个实数根;
故无论m为何值,方程恒有实数根.
(2)、∵二次函数y=mx2﹣(3m﹣1)x+2m﹣2的图象与x轴两交点间的距离为2,
∴ =2, 整理得,3m2﹣2m﹣1=0, 解得m1=1,m2=﹣ .
则函数解析式为y=x2﹣2x或y=﹣ x2+2x﹣ .
16.解:(1)、根据一元二次方程的解就是抛物线与x轴的交点的横坐标解答即可;(2)、确定出抛物线在直线上方部分的x的取值即可.
试题解析:(1)、∵抛物线y=ax2+bx+c经过A(﹣4,0)、B(1,0),∴方程ax2+bx+c=0的解为x1=﹣4,x2=1;
(2)、由图可知,ax2+bx+c>mx+n时,﹣4<x<0. p=""> </x<0.>
17.解:(1)、y=x2﹣2x﹣8=x2﹣2x+1﹣1﹣8 =(x﹣1)2﹣9.
(2)、由(1)知,抛物线的解析式为:y=(x﹣1)2﹣9, ∴抛物线的顶点坐标是(1,﹣9)
抛物线的对称轴方程是x=1 当y=0时, (x﹣1)2﹣9=0, 解得x=﹣2或x=4,
∴抛物线与x轴交点坐标是(﹣2,0),(4,0); ∵该抛物线的开口向上,对称轴方程是x=1,
∴当x>1时,y随x的增大而增大.
18.解:(1)∵抛物线的对称轴为x=1,∴x=﹣ =1.
解得:m=1.∴抛物线的解析式为y=﹣x2+2x.
(2)将x=3代入抛物线的解析式得y=﹣32+2×3=﹣3.
将y=﹣3代入得:﹣x2+2x=﹣3.解得:x1=﹣1,x2=3.
∵a=﹣1<0,∴当n<﹣1或n>3时,y1<y2. p=""> </y2.>
(3)设点M关于y轴对称点为M′,则点M′运动的轨迹如图所示:
∵当P=﹣1时,q=﹣(﹣1)2+2×(﹣1)=﹣3.∴点M关于y轴的对称点M1′的坐标为(1,﹣3).
∵当P=2时,q=﹣22+2×2=0,∴点M关于y轴的对称点M2′的坐标为(﹣2,0).
①当k<0时,∵点M关于y轴的对称点都在直线y=kx﹣4的上方,∴﹣2k﹣4≤0.
解得:k≥﹣2.
②当k>0时,∵点M关于y轴的对称点都在直线y=kx﹣4的上方,
∴k﹣4≤﹣3.解得;k≤1.
∴k的取值范围是﹣2≤k≤1.
❷ 六(1)班数学课外兴趣小组上周末到菜市场对顾客使用塑料袋的情况进行了调查统计,情况如下: 使用塑
(1) (2)①使用3个和4个塑料袋的人数较多,分别是40人和50人; ②睁察粗使没谨用2个和5个塑料袋的人数较少,分别是悉镇25人和20人. |
❸ 九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销售量的相关信息如下表
(1)当1≤x<50时,y=(200-2x)(x+40-30)=-2x2+180x+2000,
当50≤x≤90时,
y=(200-2x)(90-30)=-120x+12000,
综上所述:y=
与某学校数学兴趣小组市场调查相关的资料
热点内容
理解网络营销的概念和特点
浏览:722
爱心节的活动策划方案
浏览:123
2013美国亚马逊电子商务占比
浏览:855
汽车城网络推广方案
浏览:213
宣讲员培训计划方案
浏览:363
村级开展电工培训班实施方案
浏览:523
广告学和市场营销区别
浏览:868
电子商务对未来市场营销的影响分析
浏览:736
电子商务的应用是
浏览:775
江淮汽车品牌营销总经理
浏览:759
市场与市场营销书
浏览:144
特产全网营销方案
浏览:938
深圳易迅电子商务
浏览:747
电子商务仓单交易模式规范
浏览:928
驻店促销活动
浏览:595
村官现代农业培训方案
浏览:812
地板315促销方案
浏览:707
农村小学新教师培训计划方案
浏览:56
儿童手工店营销活动策划方案
浏览:64
2014年商场国庆节促销活动方案
浏览:535
|