导航:首页 > 营销策划 > 企业大数据营销现状问题及分析

企业大数据营销现状问题及分析

发布时间:2023-06-29 23:31:29

Ⅰ 如何用大数据来解决传统企业营销面临的问题

大数据的兴起促使传统企业进行了信息化转型,很多企业都会采用基于大数据技术的云服务产品来代替之前的传统营销工具。CRM由于实施流程相对更容易见效快,而逐渐被企业所青睐和重视。CRM的理念重在逐渐帮助企业实现从"以产品为中心"转向"以客户为中心"的营销战略,帮助企业规范和优化业务流程,同时让企业及时获取外部销售和市场信息,快速应对市场变化,从而带动企业从日常运作多方面来改进和完善管理,节约运营成本,提高企业经济效益。

企业实施CRM营销战略的关键主要包括了以下三点:

360度全面的客户管理
企业面对客户管理时候常常存在许多痛点,比如数据安全,客户信息的重复导致的撞单,因人员变动造成的客户流失。而CRM系统不但能完成客户资料的海量存储。在隐私设置上面,能根据权限设置导入导出,禁止复制,有效保证数据安全。多种方式防止资料重复,有效防止撞单、丢单、抢单等数据混乱情况。可根据CRM对客户信息设定共享、转移、分配,最大限度利用客户资源。在客户信息和数据存储方面,对资料搜集、筛选、跟踪、维护进行全方位跟踪和管理,避免因人事变动引发的客户流失。

营销自动化提高效率
在营销效率方面,企业可以利用CRM抓住每一个高价值的实时营销节点进行实时营销比如基于用户在网站的点击行为及时推送密切相关的产品信息,CRM还可以根据用户喜好通过电子邮件营销,将用户可能感兴趣的内容推送以提高点击率,从而为销售人员挖掘线索做了一个良好的铺垫。CRM系统能够通过对客户信息的搜集、整理,实现对客户的分类、分级、分地域管理,针对不同需求、特点、价值的客户进行精准的营销推广,发挥营销的最大价值。

报表科学的预测销售结果
统计图和报表是一种个性化查询方案,它保存了用户常用的查询需求,用最直观的方式表现出来,为管理决策者大幅节省了时间。只要有一个CRM账号,所有用户都可以建立自己的个性化视图,并拥有部分视图分配权限,可以灵活共享数据,提高团队协作效率。CRM系统根据报表生成各种统计图,使企业管理者随时掌握最新动态。

Ⅱ 大数据背景下唯品会精准营销存在的问题及解决方法

一、唯品会大数据平台规划和现状这是唯品会大数据平台一个中长期的规划。目标很明确,我们希望从技术上能把整个大数据做成一个包含离线计算平台、流式计算平台、模型训练平台、VRE、 DMP和多种应用的完整生态链,并且希望通过这个平台,让我们公司的分析师、开发人员可以很简易地运用起来。这是唯品会大数据平台的现状,总体和上面的规划图类似,重点在于离线平台的搭建,目前离线计算平台也已经做得差不多了。我们现在有一套很完整的数据开发平台,可以让公司的分析人员在不需要任何培训的情况下,方便地利用这个系统去挖掘大数据中的各种知识,为业务服务。除此之外,我们也有很多产品,看到图中数据产品一块,有情报中心、比价、选品、数读、魔方罗盘、仪表盘等。二、大数据中的资源管理大数据管理本身是一个很广的概念,涵盖了很多知识面。但资源管理是今年让唯品会特别难受的一个点,很多工作人员经过长时间的不眠不休,才最终把它解决掉。所以今天我会把资源管理作为重点,单独拿出来分享。这里的“数据平台使用申请”打了引号,我想说的是这个“平台使用申请”在初创公司或者建设数据平台的初期,一般是很难做到这么完善的。因为我们需要用户提交很多要求,而且这些要求是明确的,包含了比如我需要什么样的资源,HDFS的存储、数据库、计算都需要多少,资源的数目是多少,要通过什么方式去访问。拿到这个申请以后,管理员会负责去分配同样的资源,比如HDFS中分配多少资源给你使用,Hive也是,如果我想要这样一个资源分配队列,需要明确分配给你的最大/最小资源是多少。当然,这是一个理想的情况,现实却很骨感。因为这个行业的发展非常快,相信很多做大数据的同学,很多时候你是被业务和领导推着向上的,所以这时你的思考可能不是很完善,你会发现,你的理想状态是系统很强大、数据规范、流程规范、技术成熟、业务成熟,但现实呢?唯品会在半年前也是这种现状:模型的变更非常迅速,线上的那些代码实际上是我们的人员按小时为单位去做变更的。用户的能力参差不齐。有很多的历史包袱,唯品会的数据平台其实四年前就开始搭建了,其中有三年的历史包袱。同时,有大量的技术包袱,而且平台非常不稳定,掌控力差,有各种各样的瓶颈。整个大数据平台的分层也不是很明确。这是我们面临的现实。那么,这种情况下,维护人员或者像我们这样的技术架构人员就会经常接到用户各种各样的投诉和问题。这里我列了一些用户经常会抱怨的问题:这个任务昨天还好好的,为什么今天跑不出来了?2-10倍的数据量,能撑得住吗?怎么几千个任务都慢了?最近磁盘使用率急剧增加,谁在用?这个表好像不用了,我能删除掉吗?集群要扩容吗?扩多少?当你在没有足够能力应付的情况下,面对这些问题,你是一筹莫展的。而由此也引申出今天的核心议题——资源管控。三、资源管控中的存储资源和计算资源做运维、DBA,或者大数据管理人员,都需要了解一个核心,那就是资源管控。做资源管控,其实和分田到户是同样的道理。当把一块田交给你,那你就在这块田里自己玩,不要到别人的田里去掺和。通过资源管控,可以实现很多目的:从乱序到有序。申请和分配有据可查。规则公开透明。数据公开透明。有多少资源,干多少事。有合理的KPI和惩罚机制。ROI,资源倾斜给回报率高的项目。以Hadoop为例。Hadoop平台是大家都在用的一个技术框架,它有哪些资源呢?总的来说,有四个模块:计算资源、存储资源、权限资源、业务资源。今天我会重点讲右侧的计算资源和存储资源。为什么存储和计算需要关注?首先是NameNode。NameNode在Hadoop中相当于一个技术的管理节点,我们平台目前已经存储2亿的文件超过2亿的blocks,现在NameNode的内存使用在100G左右。在这么大的一个集群规模情况下,会遇到很多问题。standby namenode updateCountForQuota缓慢影响主从一致性,进而影响切换(HDFS-6763)standby checkpoint缓慢导致增量blockreport汇报被skip, 影响主从一致性,进而影响切换(HDFS-7097)standby checkpoint GC导致transfer Fsimage超时失败这里列了几个问题点,都在社区被不少人提出来,我们也确实受到了影响。其中,最重要的是集群启动时,规模越大,你的启动时间可能越慢,除非你把这部分的代码全部进行重构。举个例子,可能我们的集群重启需要30分钟,因为需要每个block去上报。另外,第二个瓶颈就是资源管理,叫做ResourceManager,这也是Hadoop中的一个技术组件。唯品会现在的规模并行度是高峰期可以有一千个任务在跑,每天有将近40万的任务提交到Hadoop集群里,基本24小时内时时刻刻都有人在运行。因为现在的电商,包括现在的大数据已经不是以前那种玩法,不是你晚上跑个批处理,事情就做完了。现在大家的要求是,你能不能5分钟内跑出来,所以我的批处理在上面可能是5分钟一个力度去提交的,所以这个集群对我们来说已经不是夜间作业的集群,而是24小时专机,永远不能宕机的一个服务。https://issues.apache.org/jira/browse/YARN-3547部分解决问题https://issues.apache.org/jira/browse/YARN-518our patch for fairscheler这里也列了两个问题,就不展开讲了,关键是第二个,我们提交给社区的补丁。这些问题社区还没有解决,我们这个补丁也还没有打到任何社区的版本里去,但是如果当你的集群规模非常大,运行HDFS时肯定会遇到和我们同样的问题——分配能力有瓶颈。目前我们通过这个补丁,分配能力提升到了近10-15倍。这其实很夸张,我们一直考虑的是,现在已经有几百台节点了,那能不能变到几千台?如果分配这个问题不解决,你的瓶颈永远卡在那,即使再加机器,管理也会因为瓶颈上不去,无法提升到几千台这样的规模。前面讲到了很多问题,怎么解决呢?开源节流。分两块,一块要提升各方面主机的性能,图中列出来的,包括了NameNode RPC性能、yarn的container assign性能,以及加机器。另外一块,就是要做各种优化管理。大家想,原先你就有几百个用户在用,当开放出去后,随着大数据应用的发展,不断有人去用,久而久之就会变成上万个用户在用。这时,你的存储是否被有效地利用呢?是否都是有价值的数据放在上面呢?你的计算是否都是有效的计算呢?还有人在用这样的一个任务吗?管理数据化成果给大家看一下我们在这一块的成果。理念很简单,就是做一个闭环。把整个数据仓库和Hadoop做成一个闭环,大家可以看到内圈,其实就是正常开发的一个数据仓库,你会建立任务、执行、下线,这是一个循环。而外循环是从整个任务建立时就开始对它进行管理,当你任务申请好之后,你会分配到一个队列,查看你的每一个日志。存储和计算会告诉你用了多少,同时还可以做一些智能的分析。在你的任务执行完之后,可以在系统里面看到任务的整个生命周期运行情况。基本上我们就是把整个大数据分到项目,分到人,分到数据库,分到几个任务,所有的指标都可以可视化地让你看到,也就是说,即使你只是简单地在系统里提交了一个SQL,可实际上你得到的是一个可视化、数据化的成果。你可以知道,今天我提交了多少个SQL,占用了多少资源,剩下多少文件,所有这些东西在系统里都可以看到。这样数据分析师也能主动跟你讲,今天慢了可能是因为提交的任务太多,今天提交的任务比上周多了一倍。你也能主动地在系统里找,为什么多了一倍?什么样的任务最占用资源?整个架构闭环大大降低基本架构技术人员的工作量。而当我们所有的数据都开放给数据分析师时,他们又能通过这些数据去做一些自己的分析,这也是一个闭环的形成。对很多公司来说,通过构建闭环,这一块的工作效率将会得到很大的提升。接下来重点讲两块资源的管理。一块是存储的资源,一块是计算的资源。存储资源管理一般情况下,大家在Hadoop中都是用Hive这个数据库,它对应的是后端的一些一二三级目录等数据库和表的目录。我们要怎样获取这些数据呢?从我们的角度来说,我们也是数据分析人员,我们要做的东西和其他的分析师其实是一样的,只不过我们分析的对象是系统的性能数据。我们会想要获取各种各样的性能数据,同时,我们需要去计算这些性能数据,做多维度的各种计算,然后把它推出去给用户看。存储资源基本上就是通过这几大块来收集,左边是获取到的各种存储的信息,文件、表、数据仓库、ETL、Hadoop的日志……第二步是把它转化为Hive里计算的文件元数据信息、表元数据信息、调度任务元数据信息、路径访问信息,最后得到的产出通过各种维度的计算,可以得到:维度:包括分区、表、数据库、任务、业务、人、目录层级、时间等所有维度;指标:全量、增量、趋势、平均文件大小、最大文件大小、最小文件大小、文件数目、占比等;热度:哪些表被频繁访问?哪些表3个月没人访问,是否可以下线了?安全:有没有敏感信息被非法访问。通过这一系列的存储资源管理,可以把所有的关键信息收集起来。下面,讲一下这些数据的使用,这也是我们公司目前正在践行的:容量计费通过计费来控制资源,使存储数据完整透明。消费预警,会提前知会用户。空间管理自动配置生命周期管理规则;存储格式,压缩格式选择(orc+gzip);文件管理自动配置生命周期管理规则;小文件har归档。控制存储的价值:一方面可以解决NN“单点”瓶颈,控制服务器的数量,降低成本。如果没有加以控制,很快你的规模就会变成几百、几千,逐渐失控。另一方面,规范数据生命周期管理,统计冷热数据的使用,区别哪些数据是能删的、哪些是能归档的、哪些是被频繁使用的,都可以通过这个手段反馈给ETL生命周期管理。计算资源管理这是yarn的一个架构图。大家都知道yarn是Hadoop的一个统一的调度管理。但yarn好像把所有资源管理的事情都搞定了,我们还需要管理什么呢?实际上,还有很多没有解决的问题。

Ⅲ 大数据时代如何做好市场营销

大数据时代下,如何做好市场营销的推广工作?下面我为大家整理了在大数据时代,做好市场营销推广工作的要点和技巧,欢迎大家阅读参考!

如何做好市场营销

大数据对用户行为与特征分析

显然,只要积累足够的用户数据,才能分析出用户的喜好与购买习惯,甚至做到"比用户更了解用户自己"。这是大数据营销的前提与出发点。过去虽也有"一切以客户为中心"作为口号的企业经营思想,可以想想真的能及时全面地了解客户的需求与所想吗,或许只有大数据时代这个问题的答案才能更加明确。

过大数据支撑精准营销信息推送

过去多少年了,精准营销总在被许多公司提及,但是真正做到的少之又少,反而是垃圾信息泛滥。究其原因,主要是过去名义上的精准营销并不怎么精准,因为其缺少用户特征数据支撑及详细准确的分析。现在的RTB广告的应用则向人们展示了比以前更好的精准性,而其背后靠的是大数据支撑。

大数据让营销活动更能投其所好

如果能在产品生产之前了解潜在用户的主要特征,以及他们对产品的期待,那么你的产品即可投其所好。如《小时代》在预告片投放后,即从微博、微信上通过大数据分析得知其电影的主要观众群为90后女性,因此后续的营销活动则主要针对这些人群展开。

大数据帮助企业筛选重点客户

许多企业家纠结的事是:在企业的用户、好友与粉丝中,哪些是最有价值的用户?有了大数据,或许这一切都可以更加有事实支撑。从用户访问的各种网站可判断其最近关心的东西是否与你的企业相关,从用户在社会化媒体上所发布的'各类内容及与他人互动的内容中,可以找出千丝万缕的信息,利用某种规则关联及综合起来,就可以帮助企业筛选重点的目标用户。

大数据分析消费者的特点

面对日新月异的新媒体,许多企业想通过对粉丝的公开内容和互动记录分析,将粉丝转化为潜在用户,激活社会化资产价值,并对潜在用户进行多个维度的画像,其目的就是更加精准地分析你的产品消费者特点。

大数据可以分析活跃粉丝的互动内容,设定消费者画像各种规则,关联潜在用户与会员数据,关联潜在用户与客服数据,筛选目标群体做精准营销,进而可以使传统客户关系管理结合社会化数据,丰富用户不同维度的标签,并可动态更新消费者生命周期数据,保持信息新鲜有效。

在大数据分析架构下的众多商业管理模式中,UFO模型较为引人关注,这里U代表User experience,即用户体验,其对应的方向是产品设计;F代表Freemium,即免费商业模式,其对应的方向是商业模式研究和设计;O代表精细化运营,其对应的方向是产品营销运营。研究认为(2014)大数据在以下三个方面起到不同程度的作用。其中,大数据与U(用户体验)及F(免费商业模式)关联度中等,而与O(精细化运营)关联度最高。

今天我们的经营者大数据分析在商业模式设计、商业模式研究、创新商业模式等方面的能力还比较弱,可能到目前在中国还没看到非常成功的利用大数据分析来设计商业模式的案例,也许是因为计算机目前的智慧还没达到设计商业模式的能力高度。

但我们可以通过大数据分析方法进行行业监测以及进行创新监测,从而可以辅助战略规划人员来进行商业模式的设计。

好产品是运营出来的,互联网产品需要不断运营、持续打磨。产品运营的目的是为了扩大用户群、提高用户活跃度、寻找合适商业模式并增加收入。

成功的互联网运营要做到精细化运营,成功的精细化运营需要大数据支撑。大数据和互联网思维在此方面关联度最高。所以,企业在大数据的应用场景上,一定是要优先考虑如何通过大数据进行精细化运营,以驱动更好的运营效率和效果的提升。

基于大数据可以更好的做精细化运营监控、更准确的做用户细分、更准确的进行个性化推荐、更合理的进行营销推广效果的评估以及基于用户生命周期进行相关的营销策略创新。具体在以下几个方面值得关注:

1、通过基于大数据的方法进行用户细分。基于大数据可以找出更好的细分维度,并对用户做更好区隔,以辅助产品运营人员做更加准确的用户细分,并洞察每个细分人群的兴趣爱好和消费倾向,对每类用户分别进行有针对性的策划和运营活动。

2、通过大数据的方法,可以实现对不同通过渠道的效果评估。如果只看一些表面的数据,如广告的点击率,是非常难衡量不同推广渠道的真正效果。如果把用户的渠道行为和后续产品行为(即通过渠道获取的用户在产品上的各种使用行为)进行打通跟踪,在此数据基础上构建渠道质量评估模型,将能够更好的发现渠道的真正质量,或者更直接的,可以发现推广渠道的究竟有多少是虚假的流量。

3、通过利用基于大数据进行有针对性的用户画像,并通过用户画像数据、用户行为和偏爱,结合个性化推荐算法实现根据用户不同的兴趣和需求推荐不同的商品或者产品,通过算法真正的实现"投其所好",以实现推广资源效率和效果最大化。


Ⅳ 分析一个企业营销现状应该包括哪些方面

答:营销现状主要提供关于市场产品竞争,分销和宏观环境的背景数据,以准确把握目标市场以及公司在其中的地位

其中,具体包括,市场描述,产品纤饥回顾,竞争回顾,分销回顾

宏观环境诊断

营销现状主要是提供关于市场竞争

产品分销和宏观环境的背景数据也准确把握目标市场以及公司在其中的地位

市场描述该部分是描述整个市场和各个细分市场的基本情况

包括市场规模,市场成长和客户信息等,进而评价市场中用户的需求情况以及影响用户

购买的因素产品回顾根据产品经理手明竖拦中的产品适时报告

显示目前产品线上主要产品的销售价格,利润以及产品寿命

情况竞争回顾明确公司目前或潜在主要竞争对手

评估他们的规模,目标,市场占有率,产品定位以及公司一级为公司和产品制定的营销战略和战术分销,回顾评估近期的销售情况和主要销售渠道的贡献

动态和未来趋势通过认识各个销售渠道激胡的重要意义

和其经营能力的变化对分析对比分析对其进行激励所需的投入

费用和交易条件,宏观环境诊断单数,影响公司或产品发展的主要宏观环境

因素包括人口,经济,技术,政治,法律,社会,文化等

Ⅳ 从大数据中分析营销思路

从大数据中分析营销思路

2013年大数据成为人们津津乐道的事,但是这个概念对于许多人来说是模糊的概念。对于企业来说,分析大数据主要是为了从中找到营销的思路。之前在我们不二码垛机网站,对数据的研究一直是时有时无的事,总的来说就是不够重视。之后在意识到,大数据对营销工作的重要性,才加大对数据的分析。如何从大数据中分析营销工作,请听我慢慢道来。

对营销工作的数据分析是最能体现营销工作效果的反馈,所以需要对各项数据反映的问题进行深入的了解。在对不二码垛机的营销工作的数据分析,我主要是从以下几点分析的。在我看来,对这样的数据分析也是真正的从用户体验的角度分析营销,这样的思路正好符合营销注重用户体验度的思路。

1、分析用户的行为特征

对用户这块的数据分析是最直接体现我们不二码垛机的用户群的,从这些用户的数据,我们能把握用户的年龄段、用户的喜好与购买习惯等等大量的用户数据。在更加深入的分析这些数据,甚至可以做到比用户更加了解用户。

2、分析营销活动的效果

在不二码垛机器人生产之前先了解潜在用户的主要特征,分析他们对产品的期待,这样生产出来的不二码垛机器人http://www.fujiyusoki.com.hk/能投其所好,这样的产品是符合用户需要的。例如湖南卫视在拍《爸爸去哪儿》之前,一定有一大堆的数据分析,包括对市场的分析,这样拍摄的节目才是符合用户喜好的东西。

3、分析竞争对手的数据

这方面的数据相信是企业想知道的,虽然对方不可能将数据告诉我们,但是我们可以通过大数据监测分析得到相关数据。对竞争对手的数据分析是快速提高我们营销效果的好方法。但是要注意竞争中手段的利用,不能超越法律。竞争对手的数据监控要合理分析,扬长避短学习优秀的地方。

4、品牌危机监测及管理支持

新媒体时代,许多企业都进军媒体中,希望利用媒体宣传自己的产品。我们不二码垛机面对品牌危机,也一直在找对策。我们营销总监说过一句话,“现在许多企业都在玩弄媒体,谁的媒体资源多,对品牌的宣传就成功了一半。”所以我们不二码垛机也在加大媒体这块的投入。大数据的分析可以让企业提前有所洞悉。在危机爆发过程中,最需要的是跟踪危机传播趋势,识别重要参与人员,方便快速应对。大数据可以采集负面定义内容,及时启动危机跟踪和报警。

5、市场预测与决策分析支持

对市场预测与决策的数据分析,有利于我们对市场的把控。现在的数据分析与数据挖掘要求较之前高许多,也更加全面、速度更加及时的大数据分析,多市场的预测及决策分析提供更好的支持。在我们不二码垛机对市场的预测分析度我们的决策有非常大的帮助。

今后,谁在大数据分析能力上更强,对数据把控力更大,在市场竞争力上会有更大的优势。

以上是小编为大家分享的关于从大数据中分析营销思路的相关内容,更多信息可以关注环球青藤分享更多干货

Ⅵ 企业网络营销现状分析应该写哪些方面

互联网的发展为企业参与全球竞争创造了条件,在互联网经济环境下,企业所面对竞争环境和竞争手段也发生了巨大的变化。因而,企业参与全球竞争的手段也应该随着新的经济、技术以及社会环境的变化而不断的深入和完善。本文着重从营销的角度探讨了在电子商务环境下,企业如何制定营销的战略和策略来赢得生存和发展的问题。

一、当前我国中小企业面临的现状

自从我国加入WTO,就要求我国经济和社会的方方面面都要尽量与国际接轨,不断的参与到国际性的市场竞争当中去,国外企业参与到我国市场竞争中来,市场竞争更加激烈。经济发展的全球化为中小企业参与全球竞争创造了机遇,同时也带来了巨大的挑战。我国中小企业在物力、财力和人力等各方面都远逊于国外大型企业。它们单个企业市场占有率低,市场开拓能力、技术和产品创新能力以及获取市场信息能力、融资能力不强,面临的形势极为严峻。中小企业如何在激烈的竞争中立于不败之地,迫切需要解决市场营销问题,认真研究,妥善解决,而互联网技术的进步为这一问题的解决创造了条件。
二、网络营销成为营销战略的重要组成部分
电子商务的发展创造了一种新的营销手段――网络营销,与传统营销相比,其理念和战略、原则和手段略有不同。传统营销是建立在传统的营销理念和竞争手段的基础之上的,网络营销集传统营销理念和手段的优势,有其自身独有的原则和方法。
在网络营销中,企业必须顺应环境的变化,采用新的竞争原则,才能在激烈的竞争中取胜。个人市场原则:在网络营销中,可以借助于计算机和网络,适应个人的需要,有针对地提供低成本、高质量的产品或服务。适应性原则:由于互联性的存在,市场竞争在全球范围内进行,市场呈现出瞬息万变之势,企业产品能适应消费者不断变化的个人需要,企业行为要适应市场的急剧变化,企业组织要富于弹性,能适应市场的变化而伸缩自如。价值链原则:一种产品的生产经营会有多个环节,每个环节都有可能增值。我们将其整体称作价值链。
企业不应只着眼于价值链某个分支的增值,而应着眼于价值链的整合,着眼于整个价值链增值。个性化原则:首先找出具有代表性的个人习惯、偏好和品位,据此设计并生产出符合个人需要的产品。然后,企业找出同类型的大量潜在客户,把他们视作一个独立的群体,向他们出售产品。品牌化原则:为了赢得消费者的青睐和信任,企业必须建立起自己网络品牌,而网络品牌的建立,是一个长期的过程。尽管企业最初建立数字产品和基础设施的费用很大,但继续扩张的成本却很小,由此产生了新的规模经济。
三、中小企业参与网络营销的竞争战略分析
中小企业必须加强自身能力,改变企业与其他竞争者之间的竞争对比力量,巩固企业现有的竞争优势:利用网络营销的企业,应对顾客的要求和潜在需求有较深了解,对企业的潜在顾客的需求也应有了解,这样,制定营销策略和营销计划才能有针对性和科学性,便于实施和控制,顺利完成营销目标。企业在数据库帮助下,营销策略具有很强针对性,在营销费用减少的同时,还可提高销售收入。加强与顾客的沟通:网络营销以顾客为中心,其中数据库中存储了大量的现有顾客和潜在顾客的相关数据资料。企业可以根据顾客需求,提供特定的产品和服务,具有很强的针对性和时效性,可大大地满足顾客的需求。顾客的理性和知识性,要求对产品的设计和生产进行参与,从而最大限度地满足自己需求。
四、中小企业网络营销战略的实施与控制
作为中小企业,其自身的特点决定了其网络营销战略的实施与控制有别于那些资金和组织较为健全的大型企业,因为大多数的中小企业都是创业型或者是发展型的企业。
企业实施网络营销必须考虑企业的目标、规模、顾客的数量和购买频率、产品的类型、产品的周期以及竞争地位等;还要考虑企业是否能支持技术投资,决策时技术发展状况和应用情况等。网络营销战略的制订要经历三个阶段:一是确定目标优势,分析实施网络营销能否促进本企业的市场增长,通过改进实施策略实现收入增长和降低营销成本;二是分析计算收益时要考虑战略性需求和未来收益;三是综合评价网络营销战略。企业在决定采取网络营销战略后,要组织战略的规划和执行,网络营销是通过新技术来改造和改进的营销渠道和方法,它涉及企业的组织、文化和管理各个方面。如果不进行有效规划和执行,该战略可能只是一种附加的营销方法,不能体现战略的竞争优势。
策略规划分为:目标规划,即在确定使用该战略的同时,识别与之相联系的营销渠道和组织,提出改进的目标和方法;技术规划,即网络营销很重要的一点是要有强大的技术投入和支持,因此资金投入和系统购买安装,以及人员培训都应统筹安排;组织规划,即实现数据库营销后,企业的组织需要进行调整以配合该策略的实施,如增加技术支持部门、数据采集处理部门,同时调整原有的推销部门等;管理规划,即组织变化后必然要求管理的变化,企业的管理必须适应网络营销需要。网络营销在规划执行后,一是应注意控制,以评估是否充分发挥该战略竞争优势,评估是否有改进余地;二是要对执行规划时的问题及时识别和加以改进;三是对技术的评估和采用。

Ⅶ 大数据分析时代对市场营销的影响研究

下面我为你准备的关于市场营销的论文,欢迎阅读借鉴,希望对大家有帮助。

一、数据分析时代演变历程

(一)数据1.0时代

数据分析出现在新的计算技术实现以后,分析1.0时代又称为商业智能时代。它通过客观分析和深入理解商业现象,取缔在决策中仅凭直觉和过时的市场调研报告,帮助管理者理性化和最大化依据事实作出决策。首次在计算机的帮助下将生产、客户交互、市场等数据录入数据库并且整合分析。但是由于发展的局限性对数据的使用更多的是准备数据,很少时间用在分析数据上。

(二)数据2.0时代

2.0时代开始于2005年,与分析1.0要求的公司能力不同,新时达要求数量分析师具备超强的分析数据能力,数据也不是只来源于公司内部,更多的来自公司外部、互联网、传感器和各种公开发布的数据。比如领英公司,充分运用数据分析抢占先机,开发出令人印象深刻的数据服务。

(三)数据3.0时代

又称为富化数据的产品时代。分析3.0时代来临的标准是各行业大公司纷纷介入。公司可以很好的分析数据,指导合适的商业决策。但是必须承认,随着数据的越来越大,更新速度越来越快,在带来发展机遇的同时,也带来诸多挑战。如何商业化地利用这次变革是亟待面对的课题。

二、大数据营销的本质

随着顾客主导逻辑时代的到来以及互联网电商等多渠道购物方式的出现,顾客角色和需求发生了转变,世界正在被感知化、互联化和智能化。大数据时代的到来,个人的行为不仅能够被量化搜集、预测,而且顾客的个人观点很可能改变商业世界和社会的运行。由此,一个个性化顾客主导商业需求的时代已然到来,大数据冲击下,市场营销引领的企业变革初见端倪。

(一)大数据时代消费者成为市场营销的主宰者

传统的市场营销过程是通过市场调研,采集目前市场的信息帮助企业研发、生产、营销和推广。但是在大数据以及社会化媒体盛行的今天,这种营销模式便黯然失色。今天的消费者已然成为了市场营销的主宰者,他们会主动搜寻商品信息,货比三家,严格筛选。他们由之前的注重使用价值到更加注重消费整个过程中的体验价值和情境价值。甚至企业品牌形象的塑造也不再是企业单一宣传,虚拟社区以及购物网站等的口碑开始影响消费者的购买行为。更有甚者,消费者通过在社交媒体等渠道表达个人的需求已经成为影响企业产品设计、研发、生产和销售的重要因素。

(二)大数据时代企业精准营销成为可能

在大数据时代下,技术的发展大大超过了企业的想象。搜集非结构化的信息已经成为一种可能,大数据不单单仅能了解细分市场的可能,更通过真正个性化洞察精确到每个顾客。通过数据的挖掘和深入分析,企业可以掌握有价值的信息帮助企业发现顾客思维模式、消费行为模式。尤其在今天顾客为了彰显个性,有着独特的消费倾向。相对于忠诚于某个品牌,顾客更忠诚与给自己的定位。如果企业的品牌不能最大化地实现客户价值,那么即使是再惠顾也难以保证顾客的持续性。并且,企业不能奢望对顾客进行归类,因为每个顾客的需求都有差别。正是如此,大数据分析才能更好地把握顾客的消费行为和偏好,为企业精准营销出谋划策。

(三)大数据时代企业营销理念――“充分以顾客为中心创造价值”

传统的营销和战略的观点认为,大规模生产意味着标准化生产方式,无个性化可言。定制化生产意味着个性化生产,但是只是小规模定制。说到底,大规模生产与定制化无法结合。但是在今天,大数据分析的营销和销售解决的是大规模生产和顾客个性化需求之间的矛盾。使大企业拥有传统小便利店的一对一顾客关系管理,以即时工具和个性化推荐使得大企业实现与顾客的实时沟通等。

三、基于数据营销案例研究――京东

京东是最大的自营式电商企业。其中的京东商城,涵盖服装、化妆品、日用品、生鲜、电脑数码等多个品类。在整个手机零售商行业里,京东无论是在销售额还是销售量都占到市场份额一半的规模。之所以占据这样的优势地位,得益于大数据的应用,即京东的JD Phone的计划。

JD Phone计划是依据京东的大数据和综合服务的能力,以用户为中心整合产业链的优质资源并联合厂商打造用户期待的产品和服务体验。京东在销售的过程中,通过对大数据的分析,内部研究出一种称为产品画像的模型。这个模型通过综合在京东网站购物消费者的信息,例如:年龄、性别、喜好等类别的信息,然后进行深入分析。根据分析结果结合不同的消费者便有诸如线上的程序化购买、精准的点击等营销手段,有效的帮助京东实现精准的营销推送。不仅如此,通过对于后续用户购物完成的售后数据分析,精确的分析商品的不足之处或者消费者的直接需求。数据3.0时代的一个特征便是企业不在单纯的在企业内部分析数据,而是共享实现价值共创。所以,京东把这些数据用于与上游供应商进行定期的交流,间接促进生产厂商与消费者沟通,了解市场的需求,指导下一次产品的市场定位。总的来说,这个计划是通过京东销售和售后环节的大数据分析,一方面指导自身精准营销,另一方面,影响供应商产品定位和企业规划,最终为消费者提供满足他们需求的个性化产品。

四、大数据营销的策略分析

(一)数据分析要树立以人为本的思维

“以人为本”体现在两个方面,一方面是数据分析以客户为本,切实分析客户的需求,用数据分析指导下一次的产品设计、生产和市场营销。另一方面,以人为本体现在对用户数据的保密性和合理化应用。切实维护好大数据和互联网背景下隐私保护的问题,使得信息技术良性发展。

(二)正确处理海量数据与核心数据的矛盾

大数据具有数据量大、类型繁多、价值密度低和速度快时效高的特点。所以在众多海量的数据中,只有反映消费者行为和市场需求的信息才是企业所需要的。不必要的数据分析只会影响企业做出正确的决策。鉴于此,首先企业需要明确核心数据的标准;其次企业要及时进行核心数据的归档;最后要有专业的数据分析专业队数据进行分析,得出科学合理的结果以指导实践。

(三)整合价值链以共享数据的方式实现价值创造

阅读全文

与企业大数据营销现状问题及分析相关的资料

热点内容
网络营销的大学有哪些特点 浏览:323
微信营销广告有哪些 浏览:924
农牧民科技培训工作方案 浏览:469
上海宝尊电子商务有限公司英文 浏览:153
电商培训计划与实施方案 浏览:396
人力资源专业与市场营销专业怎么样 浏览:70
重庆广告促销方案 浏览:547
饭店春节促销活动策划方案 浏览:938
网络营销的方式和特点是什么 浏览:334
少儿培训机构活动方案 浏览:316
实训一网络营销市场分析 浏览:26
教师期末工作结束培训方案 浏览:721
教学培训应急方案 浏览:3
双十二机构活动策划方案 浏览:277
广州1601电子商务时尚岛 浏览:354
乌鲁木齐天山区金中电子商务 浏览:657
教育培训开业策划活动方案 浏览:268
母乳喂养培训方案范文 浏览:267
电子商务的深远意义 浏览:521
网络营销面试的问题 浏览:788