Ⅰ spass软件是做什么用的
用来完成统计学分析运算、数据挖掘、预测分析和决策支持任务。
SPSS(Statistical Proct and Service Solutions),“统计产品与服务解决方案”软件。最初软件全称为“社会科学统计软件包”(SolutionsStatistical Package for the Social Sciences),但是随着SPSS产品服务领域的扩大和服务深度的增加,SPSS公司已于2000年正式将英文全称更改为“统计产品与服务解决方案”,这标志着SPSS的战略方向正在做出重大调整。
SPSS为IBM公司推出的一系列用于统计学分析运算、数据挖掘、预测分析和决策支持任务的软件产品及相关服务的总称,有Windows和Mac OS X等版本。
1984年SPSS总部首先推出了世界上第一个统计分析软件微机版本SPSS/PC+,开创了SPSS微机系列产品的开发方向,极大地扩充了它的应用范围,并使其能很快地应用于自然科学、技术科学、社会科学的各个领域。
(1)市场调查spss扩展阅读
产品特点:
1、操作简便
界面非常友好,除了数据录入及部分命令程序等少数输入工作需要键盘键入外,大多数操作可通过鼠标拖曳、点击“菜单”、“按钮”和“对话框”来完成。
2、编程方便
具有第四代语言的特点,告诉系统要做什么,无需告诉怎样做。只要了解统计分析的原理,无需通晓统计方法的各种算法,即可得到需要的统计分析结果。对于常见的统计方法,SPSS的命令语句、子命令及选择项的选择绝大部分由“对话框”的操作完成。因此,用户无需花大量时间记忆大量的命令、过程、选择项。
3、功能强大
具有完整的数据输入、编辑、统计分析、报表、图形制作等功能。自带11种类型136个函数。SPSS提供了从简单的统计描述到复杂的多因素统计分析方法,比如数据的探索性分析、统计描述、列联表分析、二维相关、秩相关、偏相关、方差分析、非参数检验、多元回归、生存分析、协方差分析、判别分析、因子分析、聚类分析、非线性回归、Logistic回归等。
Ⅱ 怎么设计调查问卷,能在数据分析的时候用到spss的聚类分析,因子分析.
http://..com/question/39691179.html?si=2
Ⅲ spss分析方法-因子分析(转载)
因子分析就是将大量的彼此可能存在相关关系的变量,转换成较少的彼此不相关的综合指标的多元统计方法。。 下面我们主要从下面四个方面来解说:
[if !supportLineBreakNewLine]
[endif]
实际应用
理论思想
建立模型
[if !supportLineBreakNewLine]
[endif]
分析结果
[if !supportLineBreakNewLine]
[endif]
一、实际应用
在市场调研中,研究人员关心的是一些研究指标的集成或者组合,这些概念通常是通过等级评分问题来测量的,如利用李克特量表取得的变量。每一个指标的集合(或一组相关联的指标)就是一个因子,指标概念等级得分就是因子得分。因子分析在市场调研中有着广泛的应用,主要包括:(1)消费者习惯和态度研究(U&A)(2) 品牌形象和特性研究(3)服务质量调查(4) 个性测试(5)形象调查(6) 市场划分识别(7)顾客、产品和行为分类在实际应用中,通过因子得分可以得出不同因子的重要性指标,而管理者则可根据这些指标的重要性来决定首先要解决的市场问题或产品问题。
[if !supportLineBreakNewLine]
[endif]
二、理论思想
因子分析(Factor Analysis)是一种数据简化的技术。它通过研究众多变量之间的内部依赖关系,探求观测数据中的基本结构,并用少数几个独立的不可观测变量来表示其基本的数据结构。这几个假想变量能够反映原来众多变量的主要信息。原始的变量是可观测的显式变量,而假想变量是不可观测的潜在变量,称为因子。主成分分析利用的是“降维”的思想,利用原始变量的线性组合组成主成分。在信息损失较小的前提下,把多个指标转化为几个互补相关的综合指标。因子分析是主成分分析的扩展和推广,通过对原始变量的相关系数矩阵内部结构的研究,导出能控制所有变量的少数几个不可观测的综合变量,通过这少数几个综合变量去描述原始的多个变量之间的相关关系。。
[if !supportLineBreakNewLine]
[endif]
因子分析的数学模型可以表示为Xp×1=Ap×m·Fm×1+ep×1,其中X为可实测的p维随机向量,它的每个分量代表一个指标或变量。
F=(F1, F2,...,Fm)T为不可观测的m维随机向量,它的各个分量将出现在每个变量之中,所以称它们为公共因子。矩阵A称为因子载荷矩阵,矩阵中的每一个元素称为因子载荷,表示第i个变量在第j个公共因子上的载荷,它们需要由多次观测X所得到的样本来估计。
向量e称为特殊因子,其中包括随机误差,它们满足条件:
(1)Cov(F,e)=0,即F与e不相关。
(2)Cov(Fi,Fj)=0,i≠j ,Var(Fi)=Cov(Fi, Fj)=I ,即向量F的协方差矩阵为m阶单位阵。(
3)Cov(ei,ej)=0,i≠j ,Var(ei)=σi2,即向量e的协方差矩阵为p阶对角阵。因子分析的基本思想是通过变量的相关系数矩阵内部结构的分析,从中找出少数几个能控制原始变量的随机变量Fi(i=1,2,...,m),选取公共因子的原则是使尽可能多地包含原始变量中的信息,建立模型X=A· F+e ,忽略e,以F代替X,用它再现原始变量X的众多分量之间的相关关系,达到简化变量降低维数的目的。
[if !supportLineBreakNewLine]
[endif]
三、建立模型
[if !supportLineBreakNewLine]
[endif]
因子分析的基本步骤如下。
对数据进行标准化处理,
估计因子载荷矩阵,
因子旋转,建立因子分析数学模型的目的不仅要找出公共因子并对变量进行分组,更重要的是要知道每个公共因子的意义,以便对实际问题作出科学分析。当因子载荷矩阵A的结构不便对主因子进行解释时,可用一个正交阵右乘A(即对A实施一个正交变换)。由线性代数知识,对A施行一个正交变换,对应坐标系就有一次旋转,便于对因子的意义进行解释。
估计因子得分以公共因子表示原因变量的线性组合,而得到因子得分函数。我们可以通过因子得分函数计算观测记录在各个公共因子上的得分,从而解决公共因子不可观测的问题。
[if !supportLineBreakNewLine]
[endif]
因子分析案例:
[if !supportLineBreakNewLine]
[endif]
题目:以下给出了中国历年国民经济主要指标统计(1992~2000)数据。试用因子分析对这些指标提取公因子并写出提取的公因子与这些指标之间的表达式。
一、数据输入
二、操作步骤 1、进入SPSS,打开相关数据文件,选择“分析”|“降维”|“因子”命令。2、选择进行因子分析的变量。在对话框的左侧列表框中,依次选择“工业总产值”“国内生产总值”“货物周转量”“原煤”“发电量”“原油”进入“变量”列表框。
3、选择输出系数相关矩阵。
单击“因子分析”对话框中的“描述”按钮,弹出“因子分析:描述”对话框。在“相关性矩阵”选项组中选中“KMO和巴特利特的球形度检验”复选框,单击“继续”按钮返回“因子分析”对话框。
4、设置对提取公因子的要求及相关输出内容。
单击“因子分析”对话框中的“提取”按钮,在“输出”选项组中选中“碎石图”复选框。
5、设置因子旋转方法。单击“因子分析”对话框中的“旋转”按钮,在“方法”选项组中选中“最大方差法”单选按钮。
6、设置有关因子得分的选项。单击“得分”按钮,选中“显示因子得分系数矩阵”复选框。
7、其余设置采用系统默认值即可。单击“确定”按钮,等待输出结果。
[if !supportLineBreakNewLine]
[endif]
四、结果分析
1、KMO检验和巴特利特检验结果KMO检验是为了看数据是否适合进行因子分析,其取值范围是0~1。其中0.9~1表示极好,0.8~0.9表示可奖励的,0.7~0.8表示还好,0.6~0.7表示中等,0.5~0.6表示糟糕,0~0.5表示不可接受。如下表所示,本例中KMO的取值为0.657,表明可以进行因子分析。巴特利特检验是为了看数据是否来自于服从多元正态分布的总体。本例中显著性值为0.000,说明数据来自正态分布总体,适合进一步分析。
2、变量共同度变量共同度表示的是各变量中所含原始信息能被提取的公因子所解释的程度。如下表所示,因为本例中所有变量共同度都在85%以上,所以提取的这几个公因子对各变量的解释能力很强。
3
4、碎石图有两个成分的特征值超过了1,只考虑这两个成分即可。
5、旋转成分矩阵第一个因子在工业总产值、国内生产总值、货物周转量、发电量及原油上有较大的载荷,所以其反映的是除原煤以外的其他变量的信息,第二个因子在原煤这一变量上有较大的载荷,反映的是原煤这一变量的信息。
6、成分得分系数矩阵给出了成分得分系数矩阵,据此可以直接写出各公因子的表达式。值得一提的是,在表达式中各个变量已经不是原始变量而是标准化变量。表达式如下:F1=0.194*工业总产值+0.216*国内生产总值+0.206*货物周转量+0.003*原煤+0.211*发电量+0.212*原油F2=0.311*工业总产值-0.002*国内生产总值-0.154*货物周转量+0.853*原煤-0.124*发电量+0.036*原油
分析结论:
[if !supportLineBreakNewLine]
[endif]
通过分析,我们可以知道:
由结果分析1、知,本例很适合使用因子分析。
由结果分析2、3、4可知,本例适合选前两个公因子进行分析,因为这已足够替代原来的变量,它们几乎涵盖了原变量的全部信息。
结果分析5给出了本例中的两个公因子及其所反映的变量。
结果分析6给出了公因子与标准化形式的变量之间的表达式。
[if !supportLineBreakNewLine]
[endif]
参考案例数据:
[if !supportLineBreakNewLine]
[endif]
[if !supportLists]【1】 [endif]spss统计分析与行业应用案例详解(第四版) 杨维忠,张甜,王国平 清华大学出版社
[if !supportLists]【2】 [endif](获取更多知识,前往gz号程式解说)
原文来自 https://mp.weixin.qq.com/s/5b-rkSherOn-tHyzBZPsTw
Ⅳ 如何利用spss做调查问卷的回归分析
1、首先将数据录入到SPSS软件中,也可以是Excel表格直接导入,不要忘记把者枝“变量视图”设置成数值型。
Ⅳ 问卷星自带的spss分析好用吗
比较好用。
Spss是一种很科学的数据分析方法。问卷星采用Spss的分析方法还是很有科学依据的。当然,影响数据信度的因素还受答题者答题是否客观,问卷设计是否科学等问题。
问卷星是一个专业的在线问卷调查、考试、测评、投票平台,专注于为用户提供功能强大、人性化的在线设计问卷、采集数据、自定义报表、调查结果分析等系列服务。
与传统调查方式和其他调查网站或调查系统相比,问卷星具有快捷、易用、低成本的明显优势,已经被大量企业和个人广泛使用,典型应用包括:
企业:客户满意度调查、市场调查、员工满意度调查、企业内训、需求登记、人才测评、培训管理、员工考试。
高校:学术调研、社会调查、在线报名、在线投票、信息采集、在线考试。
个人:讨论投票、公益调查、博客调查、趣味测试。
发展历史
SPSS是世界上最早的统计分析软件,由美国斯坦福大学的三位研究生Norman H. Nie、C. Hadlai (Tex) Hull和Dale H. Bent于1968年研究开发成功,同时成立了SPSS公司,并于1975年成立法人组织、在芝加哥组建了SPSS总部。
2009年7月28日,IBM公司宣布将用12亿美元现金收购统计分析软件提供商SPSS公司。如今SPSS的最新版本为25,而且更名为IBM SPSS Statistics。迄今,SPSS公司已有40余年的成长历史。
Ⅵ 针对数据“保险市场调查” ,回答下列问题: spss答案是什么呀上机如何操作实在不懂,麻烦了。
一、做差异分析:卡方检验、方差分析、T检验都可以
二、探索性因子分析,主成份分析
三、可以考虑用上面的分析结果选择
四、这个要看你问卷的设计,需要对这方面进行设问,然后数据筛选出“享受国家养老金”的样本进行分析就知道了
五、没有数据。。。
六、选出这些样本,对其社会学特征分析
七、用李克特量表衡量满意度,改善的话要结合你的问卷数据来阐述
八、首先你得设问,提供几个选项。这样才有数据
Ⅶ spss如何分析市场调查问卷
最简单的就是描述性统计分析,然后还有交叉分析。
Ⅷ 如何用SPSS统计调查问卷
用法如下:
1、频度分析
频度就是某个选项出现的次数,一般用来描述单选项。
问卷设计实例:
企业经营规模为(年销售额:人民币):
□>30亿 □5~30亿 □0.5~5亿 □<0.5亿
数据记录要点:
单列记录,第几项选中记录数值几,例如选中“0.5~5亿”则记录3。
SPSS基本操作方法:
导入数据;
Analyze……Descriptive statistics……Frequencies
选入该列数据,“OK”。
2、多项频次分析
用来描述多选项目的频次。
问卷设计实例:
贵公司产品的主要竞争力表现在(多选):
□外观 □功能 □质量 □个性化 □价格(成本) □交货期 □其它
数据记录要点:
多列记录,有几个选项记几列,选中记为1,未选中记为0。例如如果选中了外观和质量,则多列的记录为1,0,1,0,0,0,0。
SPSS基本操作方法:
导入数据;
Analyze……Multiple Response……Define Sets
选入该问题的多列数据,给新的集合变量取名(在Name那里填一个名字,例如“竞争力”),在Dichotomies Counted value中输入1,“Add”。
Analyze……Multiple Response……Frequencies
选人自定义的集合变量,“OK”。
3、交叉频次分析
用来描述变量之间的关联性,比如分析不同销售额企业的产品竞争力的关联关系(这两项之间不一定有关系,可以用logistic分析验证一下)。
问卷设计实例:
参见上面的两项。
数据记录要点:
参见上面两项。
SPSS基本操作方法(单选对单选,单选对多选,单选对多选在操作上略有不同):
导入数据;如果有多选项需要按2的方法定义集合变量。
如果是单选对单选
Analyze……Descriptivestatistics……Crosstabs
否则:
Analyze……Multiple Response……Crosstabs
将两变量分别选入行和列中(多选项是选人集合变量,如果是单选对多选还要设置单选项的最大最小值),“OK”
4、描述分析
一般用来描述单变量的描述统计量,这些述统计量有平均值、算术和、标准差,最大值、最小值、方差、范围和平均数标准误等。问卷中用得不是特别多。
问卷设计实例(一般是开放性问题):
贵企业三维CAD已经应用了 ???年。
数据记录要点:
单列记录,直接记录所填数据。
SPSS基本操作方法:
导入数据;
Analyze……Descriptivestatistics……Descriptives
选入该列数据,“Options…”,在其中选择需要的统计项目,问卷常用的项目有Mean(平均值)、Minimum( 最小值)、Maximum(最大值)等,“Continue”, “OK”。
注意事项:
注意一些符号的输入,要正确。
Ⅸ 数据统计与分析技术SPSS软件实用教程的内容提要:
SPSS是国内外应用圆敬逗得十分广泛的统计软件,它可用于自然科学和稿塌社会科学领域的基本数据处理与分析,具体适用于市场营销、销售分析、市场调查、统计报告、质量控制、科学研究、社会调查、企业管理、教学及行政管理等领域。本教材橘卖以最新的SPSS12.0版本为范本,介绍数据预处理、统计建模、数据统计分析的基本原则、原理、技巧和操作技术。本教材注重实践,着重培养学生的实际动手能力,对大型社会调查的数据汇总、分组、整理和分析能力,对基础资料综合定量分析、研究能力等,同时关注学生对于数学模型、数据挖掘技术的深入认识和理解。
Ⅹ 谁能教我怎样用spss做调查问卷分析啊,包括怎样输入数据,急啊
定义变量
大多数情况下我们需要从头定义变量,在打开SPSS后,我们可以看到和excel相似的界面,在界面的左下方可以看到Data View, Variable View两个标签,只需单击左下方的Variable View标签就可以切换到变量定义界面开始定义新变量。在表格上方可以看到一个变量要设置如下几项:name(变量名)、type(变量类型)、width(变量值的宽度)、decimals(小数位) 、label(变量标签) 、Values(定义具体变量值的标签)、Missing(定义变量缺失值)、Colomns(定义显示列宽)、Align(定义显示对齐方式)、Measure(定义变量类型是连续、有序分类还是无序分类). 我们知道在spss中,我们可以把一份问卷上面的每一个问题设为一个变量,这样一份问卷有多少个问题就要有多少个变量与之对应,每一个问题的答案即为变量的取值.现在我们以问卷第一个问题为例来说明变量的设置.
数据录入 Spss数据录入有很多方式,大致有一下几种:
读取SPSS格式的数据
读取Excel等格式的数据
读取文本数据(Fixed和Delimiter)
读取数据库格式数据(分如下两步)
(1)配置ODBC
(2)在SPSS中通过ODBC和数据库进行 但是对于问卷的数据录入其实很简单,只要在spss的数据录入窗口中直接输入就可以了,只是在这里有几点注意的事项需要说明一下.
1. 在数据录入窗口,我们可以看到有一个表格,这个表格中的每一行代表一份问卷,我们也称为一个个案.
2. 在数据录入窗口中,我们可以看到表格上方出现了1、2、3、4、5…….的标签名,这其实是我们在第一步定义变量中,我们为问卷的每一个问题取的变量名,即1代表第一题,2代表第二题.以次类推.我们只需要在变量名下面输入对应问题的答案即可完成问卷的数据录入.比如上述年龄段查询的例题,如果问卷上勾选了A答案,我们在1下面输入1就行了(不要忘记我们通常是用1、2、3、4来代替A、B、C、D的).
3.我们知道一行代表一份问卷,所以有几分问卷,就要有几行的数据. 在数据录入完成后,我们要做的就是我们的关键部分,即问卷的统计分析了,因为这时我们已经把问卷中的数据录入我们的软件中了. 第三步:统计分析 有了数据,可以利用SPSS的各种分析方法进行分析,但选择何种统计分析方法,即调用哪个统计分析过程,是得到正确分析结果的关键。这要根据我们的问卷调查的目的和我们想要什么样的结果来选择.SPSS有数值分析和作图分析两类方法.
1.作图分析: 在SPSS中,除了生存分析所用的生存曲线图被整合到Analyze菜单中外,其他的统计绘图功能均放置在graph菜单中。该菜单具体分为以下几部分::
(1)Gallery:相当于一个自学向导,将统计绘图功能做了简单的介绍,初学者可以通过它对SPSS的绘图能力有一个大致的了解。
(2)Interactive:交互式统计图。
(3)Map:统计地图。
(4)下方的其他菜单项是我们最为常用的普通统计图,具体来说有: 条图 散点图 线图 直方图 饼图 面积图 箱式图
51调查网,让调查更简单方便!