导航:首页 > 营销大全 > 大数据时代变革保险市场营销

大数据时代变革保险市场营销

发布时间:2023-09-24 06:50:50

⑴ 大数据在保险中的实时应用

大数据在保险中的实时应用
几十年来,保险业一直在努力处理交易和风险管理方面的数据。电信与数据融合的前沿趋势让保险公司对客户行为有了新的认知,而这被称之为“大数据”。数据具有广泛性、多样性的特点,特别是能将传统的关系型数据库管理技术推向极致,并且让人们越来越关注数据管理的新方法。大数据、分析和数据管理齐头并进;美国1.1万亿美元保险市场的各家公司正在争先恐后地开展自己的数据分析实践。
大数据的实时应用案例
大数据技术可以使公司评估非结构化数据由不可行变为可行。这里将介绍一些大数据技术在保险领域的应用案例。
欺诈识别
大数据已经帮助保险人做出了改变。而今他们超越了以索赔为中心和以人为中心的算法欺诈检测技术。这些技术侧重于分析索赔方、保险供应方和其他的信息来源(例如,同一个被保险人提交了多少份类似的索赔请求),并扩展到防火墙之外的数据源,以便基于外部信息分析(例如队列分析 - 使用一个人的社交圈子来分析相关个体之间的类似行为),这里考虑到的是一群互相联系的人而不仅仅是一个人。

在美国,每年健康保险欺诈给保险业带来大约700亿到2600亿美元的损失;欧盟也有300亿到1000亿美元的损失。
欺诈检测和预防主要通过两种方法实现:
基于实时数据分析的欺诈审计规则(基于历史数据的传统类型)
欺诈预测记分卡(基于实时数据的新类型)
客户关系管理(CRM)
所有的非结构化数据都可以提供给所有的保险公司,这可以成为“大数据分析”方法的基础。一些非结构化数据源包括:
客户线上文档
如果这些文档可以被轻松搜索到并且能汇集到企业的数据管理平台,那么保险公司就可以获得关于客户的大量信息,包括对非标准、非结构化的生命健康的医疗报告信息,以及再保险和大型商业财产保险部门的信息。
客户关怀通话记录
这些内容包含了客户来电自由形式的代表性评论,这些评论可以用来进行市场情绪调研,有助于形成策略和付诸实践,以提高客户的保留率,减少客户流失。
点击流数据
由面向客户的网站生成,可以分析这些数据,以发现显示客户倾向的浏览模式,尤其是当与呼叫中心记录相关的时候,找出那些客户在网络交互后立即呼叫的例子。

索赔管理
大数据也与索赔管理息息相关:运营商希望在索赔流程期间保存好图像、视频和文本标记(例如,来自警察检查员或拖车司机的汽车保险索赔的文本标记)。结合投保人和受益人几个实体(受益人、投保人、保险人)的汇总信息对非结构化数据的大数据分析变得尤为重要。
承保
在再保险和大型商业保险部门,大量的支持信息会作为信息提交的一部分(例如,损失历史、财产计划、车辆调度和董事的详细信息)。
大数据技术使保险公司能够快速地存储和访问任何数据,以便他们能够通过分析来突出异常、某种模式和部分重点——这是人工阅读文档时代非常困难的事情。自动化数据管理的能力,以及记录支持文档的能力,使保险公司能够创建风险和客户档案,这在整个公司中都是统一可审计的并且能够提供丰富的分析资料。

⑵ 如何运用大数据做好精细化营销

现在大数据不断发展衍生出了很多用途,而在营销上面的用途是彻底改变了营销模式。而该如何利用大数据来进行精准营销呢?

1、针对性营销

大数据可以提供某些企业交易特点和资金需求特点,可以帮助业务部门对企业的资金需求进行分析和筛选,提供现金管理产品,帮助企业解决流动性问题。大数据可以帮助信用卡中心追踪热点信息,针对特定人群提供精准营销产品,增加新卡用户,例如热映电影、娱乐活动、餐饮团购等。银行针对特定人群推出定制的理财产品,保险产品。

2、社交化营销-善融商务

人们的社交行为产生了巨大的数据,利用社交平台,结合大数据分析,金融行业可以开展成本较低的社交化营销,借助于开放的互联网平台,依据大量的客户需求数据,进轿培铅行产品和渠道推广。通过互联网社交平台返回的海量数据,评测营销方案的阶段成果,实时调整营销能够方案,利用口碑传销和病毒式传播来帮助金融行业快速进行产品宣传、品牌宣传、渠道宣传等。

3、信用风险评估

银行可以利用大数据增加信用风险输入纬度,提高信用风险管理水平,动态管理企业和个人客户的形用风险。建立基于大数据的信用风险评估模型和方法,将会提高银行对中小企业和个人的资金支持。个人信用评分标准的建立,将会帮助银行在即将到来的信用消费时代取得领先。基闭好于大数据的动态的信用风险管理机制,将会帮助银行提前预测高风险信用违约时间,及时介入,降低违约概率,同时预防信用欺诈。

4、欺诈风险管理

信用卡公司可以利用大数据及时预测和发现恶意欺诈事件,即使采取措施,降低信用开欺诈风险。银行可以基于大数据建立防欺诈监控系统,动态管理网上银行、POS机、ATM等渠道的欺诈事件,大数据提供了多纬度的监控指标和联动方式,可以弥补和完善目前反欺诈监控方式的不足。特别在识别客户行为趋势方面,大数据具有较大的优势。

5、提升客户体验

银行可以依据大数据分析,可以对进入网点的客户提供定制服务和问候,在节假日为客户提供定制服务,预知企业客户未来资金需求,提前进行预约,提高客户体验。私人银行可以依据大数据分析报告,帮助客户进行金融市场产品投资,赚取超额利润,形成竞争优势,提高客户体验。保险业务可以依据大数据预测为客户提前提供有效服务,提高客户体验,同时增加商业机会。理财业务可以利用大数分析,快速推出行业报告和市场趋势报告,帮助投资者及时了解热点,提高客户满意度。

6、需求分析和产品创新

大数据提供了整体数据,银行可以利用整体样本数据,从中进行筛选。可以从客户职业,年龄,收入,居住地,习惯爱好,资产,信用等各个方面中散对客户进行分类,依据其他的数据输入纬度来确定客户的需求来定制产品。银行还可以依据企业的交易数据来预测行业发展特点,为企业客户提供金融产品服务。

7、运营效率提升

大数据可以展现不同产品线的实际收入和成本,帮助银行进行产品管理。同时大数据为管理层提供全方面报表,揭示内部运营管理效率,有力于内部效率提升。大数据可以帮助市场部门有效监测营销方案和市场推广情况,提高营销精度,降低营销费用。大数据可以展现风险视图控制信用风险,同时加快信用审批。大数据可以帮助保险行业快速为客户提供保险方案,提高效率,降低成本。理财产品也可以利用大数据动态提供行业报告,快速帮助投资人。

8、决策支持

大数据可以帮助金融企业,为即将实施的决策提供数据支撑,同时也可以依据大数据分析归纳出规律,进一步演绎出新的决策。基于大数据和人工智能技术的决策树模型将会有效帮助金融行业分析信用风险,为业务决策提供有力支持。金融行业新产品或新服务推向市场前,可以在局部地区进行试验,大数据技术可以对采集的数据精准营销进行分析,通过统计分析报告为新产品的市场推广提供决策支持。

⑶ “大数据”的保险业应用主题

“大数据”的保险业应用主题_数据分析师考试

在数据应用呈现爆炸式发展的时代,不能把握“大数据”商机、引领潮流的保险企业,将可能逐渐丧失市场竞争力。

“大数据”是依托新的数据处理技术,对海量、高速增长、多样化的结构和非结构数据进行加工挖掘,找寻数据背后的规律,以提高分析决策能力、优化流程和科学配置资源的管理工具。

“大数据”正在向经济、社会、科学、文体及公共卫生等多个领域快速渗透。在网络技术、移动互联、云计算等新技术和金融市场化改革的双驱动下,金融与互联网、各金融板块之间的界限和壁垒被冲破,市场的游戏规则发生了深刻变化,谁掌握了数据,谁就掌握了竞争的制高点。

现代保险服务业要在经济“新常态”中研究和实施“大数据”战略,关键要找准大数据在保险业的应用场景、应用主题和应用策略。

助力保险费率市场化

保险作为一种风险转移和管理工具,是一种社会群体之间的风险救助机制。保险产品机理主要是遵循统计学范畴的“大数法则”,基于历史风险发生和损失的数据进行分析和预测,在重复随机现象中找出“必然”规律,依靠精算技术实施产品定价、建立财务运行机制。有些观点认为大数据颠覆了“大数法则”,实际上,虽然两者都是在“大量”数据基础上进行风险和财务预测,但在保险产品定价机制中的作用基点是完全不同的。

“大数法则”是保险定价的根本法则,特别是针对车险、寿险、健康等关系社会公众利益的领域,必须依托“大数法则”确保行业基准纯风险损失率厘定的公平性、充足性和安全性。也就是说,“大数法则”是保险运行管理的数理逻辑,是保险业不可动摇的理论和定价基础。而“大数据”主要发挥保险定价的辅助作用,特别是采集和获取客户行为、交易的网络数据进行关联分析,找寻数据背后风险与成本、收益的匹配规律,推动保险公司客户细分化、责任碎片化、产品定制化,优化精算定价模型,主要基于附加费率建立科学、有效的保险费率浮动机制和差别化定价机制。

因此,“大数据”并没有颠覆“大数法则”,而是对保险费率市场化形成机制的重要优化和改进,是一种以新技术为依托、更加精细化的风险管理辅助工具。

目前,新一轮保险费率形成机制改革步伐明显加快,非车险、意外险、投资连结险、普通型寿险、万能险等已经相继放开,商业车险、分红险市场化改革也即将发令放行,更多的产品定价权和选择权将交给市场。科学、有效的费率形成机制是市场化改革成功的关键。应全面构造以“大数法则”为基础的基准费率和以“大数据”技术为辅助的附加费率和产品创新机制。

一方面,保险监管部门应主导构建公开公正的保险基准费率形成机制,建立保险基准费率定期测算和发布机制,特别是借鉴国际上的成熟经验和模式,设立独立的保险费率厘定机构,形成主要保险产品的定价参照基准体系。另一方面,要鼓励保险企业在遵循基准费率的同时,发挥大数据在保险产品区域化、差别化、个性化的创新支撑作用,处理好产品创新与风险、成本、收益的关系。

驱动新一轮转型发展

自改革开放以来,保险市场保费和资产规模迅速扩张,却难以逃脱产品同质化、“跑马圈地”、价格恶性竞争、服务体验差的外部诟病,归根到底还是源于“以产品为中心”的粗放式发展模式。由于保险企业数据维度、质量、可利用度和处理能力不足,向“以客户为中心”的集约化管理模式转型“常提却难新”。

伴随金融综合化、保险集团化、渠道多元化发展,特别是电销、第三方电商、移动互联等新渠道的兴起,保险数据的历史积累、采集维度、关联分析与实践应用日益成熟,由于大数据有利于提升保险企业对客户行为特征、风险和产品偏好的分析能力,为保险企业客户关系管理、风险识别与定价、营销策略分析、理赔欺诈风险防控提供了新的驱动力,成为保险业新一轮转型发展的“利器”。

因此,保险企业应找准大数据在经营管理中的应用场景,着力解决制约转型发展的关键环节。

一是加强数据资源内外部整合。加强集团内部、各渠道、各产品线的数据整合利用,积极采集全面反映客户行为特征和交易偏好的移动互联、社交媒体、电商、地理位置、OBD等线上数据,引入身份、信用、车辆、驾驶行为等线下数据,为大数据技术应用建立现实基础。

二是构建完整的客户数据图谱。依托数据挖掘技术,推进客户需求分析和客户群组细分,在集团或公司内部建立客户虚拟账户,丰富客户全景视图,加强客户挽留与个性化推荐,促进客户的获取率、留存率和持续率。构建完善的客户自助服务体系,改善客户体验、提升客户忠诚度、提高客户整体价值。

三是提升数据发现和决策能力。重点提升对非结构化数据的存储、加工和分析能力。围绕交叉和二次销售、精准营销、代理人甄选和流失预警,加强数据分析和快速响应,整合昂贵的渠道资源,提升销售渠道价值。通过理赔洞见分析、反欺诈关联分析,提升成本精细化管理、精准打击欺诈行为。

四是加强数据架构规划。引入新的大数据分析工具和存储技术,提高对语音、视频、图片、网络日志等非结构化数据的分析处理能力,对信息模型、主辅数据源以及数据集成架构进行前瞻性设计,加强主数据和元数据管理,推动信息数据的逻辑整合。提高自身数据质量,注重数据全生命周期管理。

开创“数据治理”新模式

在保险资金运用和费率市场化加快推进的背景下,按照保监会“放开前端、管住后端”的市场化改革思路,市场化的“新常态”使传统的文件出台、现场检查、行政处罚等保险市场治理手段难以奏效,滞后的监管技术手段将无助于有效防控区域性和系统性风险,客观上要求保险监管部门从依靠行政手段向依靠“数据手段”治理市场转变:

一是从场外交易向场内交易转变。通过建立保险产品交易、中介交易和资产交易的交易场所和信息平台,促进保险交易的透明化、规则化和信息对称化;二是从监管信息统计与非现场监管向保单登记管理转变。市场和风险的快速变化,促使保险监管从依靠时滞的统计数据和局部的样本数据,向保单级的全量数据和实时的生产数据演变;三是由条款费率静态审批管理向基准费率测算常态化转变。定价权逐步交给市场后,产品创新必然层出不穷,基准费率常态监测、回溯分析和定期测算是产品监管和风险控制的必然要求。

基于上述行业转型发展和市场治理需求,应从提高行业核心竞争力和抗风险能力的高度,科学规划行业大数据体系。

一是全面推进行业信息共享与应用。在客户隐私保护和数据安全的前提下,建立行业中央集成数据仓库,打破企业之间的数据孤岛,将分散在各保险机构的数据,按照客户、保单、业务等多个主题进行采集、存储和有限共享,充分释放数据共享在规范市场行为、反保险欺诈、提升定价能力、促进精细化管理等方面的内在价值。

二是主动与外部数据交互应用。拓宽行业整体数据维度,依托行业数据共享的平台优势,积极引入公安、气象、医疗、教育、信用、移动通信等外部数据,主动与交管、税务、经侦、社保、征信等公共管理部门进行数据交互,发挥外部数据在行业内部治理中的独特作用,依托共享平台有效延伸保险参与社会治理的范围和触点。

三是研究制定行业大数据战略和设施框架。完善信息共享平台和保单登记制度等相关法律法规,为行业大数据战略实施建立良好的政策环境。加强行业数据标准建设,规范统一共享接口标准,提高数据整体质量;不断优化共享数据库的采集、存储、处理与结果应用的流程和技术,研究建立行业数据分析框架和模型,依托数据挖掘、云计算平台、虚拟化技术,支持海量、多结构类型、高频度的大数据处理。加强行业信息共享的安全体系建设,保障保险机构与共享信息关联生产的连续性、安全性和稳定性。

以上是小编为大家分享的关于“大数据”的保险业应用主题的相关内容,更多信息可以关注环球青藤分享更多干货

⑷ 大数据如何助力保险企业精准获客

一方面,移动互联网飞速发展,极大变更了消费者的消费方式和行为,已造成网上购物习惯性,这类变化给保险公司给与了许多数据信息模版。运营商大数据依据对消费者购买行为和风险要素数据信息的精准分析,整合资源构建多方位客户肖像,进而设计开发出很多贴近“衣食住行娱”等生活场景的理财保险商品。
另一方面,以数据信息为重要的保险科技应用,促进保险行业和公司登记科技创新潮流趋势。运营商大数据改善了客户投保体验,有效降低了保费交易手续费,提升智能终端销售市场成功率,促进保险公司的运营效率高更快、经营成本更低、服务质量更强。

温馨提示:以上信息仅供参考。
应答时间:2021-07-21,最新业务变化请以平安银行官网公布为准。
[平安银行我知道]想要知道更多?快来看“平安银行我知道”吧~
https://b.pingan.com.cn/paim/iknow/index.html

阅读全文

与大数据时代变革保险市场营销相关的资料

热点内容
工会家政服务培训方案 浏览:262
2014助理电子商务 浏览:16
商场营销方案成功案例 浏览:91
展销会引流策划方案 浏览:507
电子商务含义的英文解释 浏览:235
小学教育科研培训方案 浏览:400
怎样做网络营销推广唯独大将军21 浏览:920
香飘飘事件营销促销方案 浏览:843
宁波电子商务网订香烟 浏览:20
慢慢来电子商务 浏览:749
社区志愿者培训方案及教材 浏览:492
河南省邮政电子商务平台社会网点接入系统 浏览:319
2b2c电子商务中涉及的对象包括什么 浏览:441
邯郸市丛台华强电子商务有限公司 浏览:303
义乌市多全电子商务有限公司 浏览:940
市场营销的对策 浏览:251
与电子商务会计有关的书 浏览:885
php开源电子商务系统 浏览:574
中国电信电子商务部 浏览:632
电子商务网站下载 浏览:561