导航:首页 > 电商促销 > 电子商务平台常用数据分析

电子商务平台常用数据分析

发布时间:2021-05-13 12:53:17

电子商务运营数据一般分析哪些

一、抄浏览、创建订单,支袭付订单转化;
二、商品浏览,加入购物车,提交购物车,创建订单,支付等五步转化趋势;
三、商品两个时间区间的销量、金额、客单价对比分析;
四、网站首页、频道页对商品浏览、创建订单,支付订单转化;
五、网站首页、频道页对商品浏览,加入购物车,提交购物车,创建订单,支付等五步转化趋势;
六、网站页面广告位对商品浏览、创建订单,支付订单转化;
七、自定义商品组功能,重点对商品活动、商品类目进行统计分析。

㈡ 电商数据分析需要统计哪些指标

数据指标
1.电商总体运营指标
数据指标
电商总体运营整体指标主要面向的人群电商运营的高层,通过总体运营指标评估电商运营的整体效果。电商总体运营整体指标包括四方面的指标:
(1)流量类指标
独立访客数(UV),指访问电商网站的不重复用户数。对于PC网站,统计系统会在每个访问网站的用户浏览器上“种”一个cookie来标记这个用户,这样每当被标记cookie的用户访问网站时,统计系统都会识别到此用户。在一定统计周期内如(一天)统计系统会利用消重技术,对同一cookie在一天内多次访问网站的用户仅记录为一个用户。而在移动终端区分独立用户的方式则是按独立设备计算独立用户。
页面访问数(PV),即页面浏览量,用户每一次对电商网站或着移动电商应用中的每个网页访问均被记录一次,用户对同一页面的多次访问,访问量累计。
人均页面访问数,即页面访问数(PV)/独立访客数,该指标反映的是网站访问粘性。
(2)订单产生效率指标
总订单数量,即访客完成网上下单的订单数之和。
访问到下单的转化率,即电商网站下单的次数与访问该网站的次数之比。
(3)总体销售业绩指标
网站成交额(GMV),电商成交金额,即只要网民下单,生成订单号,便可以计算在GMV里面。
销售金额。销售金额是货品出售的金额总额。
注:无论这个订单最终是否成交,有些订单下单未付款或取消,都算GMV,销售金额一般只指实际成交金额,所以,GMV的数字一般比销售金额大。
客单价,即订单金额与订单数量的比值。
(4)整体指标
销售毛利,是销售收入与成本的差值。销售毛利中只扣除了商品原始成本,不扣除没有计入成本的期间费用(管理费用、财务费用、营业费用)。
毛利率,是衡量电商企业盈利能力的指标,是销售毛利与销售收入的比值。如京东的2014年毛利率连续四个季度稳步上升,从第一季度的10.0%上升至第四季度的12.7%,体现出京东盈利能力的提升。
2.网站流量指标
数据指标
(1)流量规模类指标
常用的流量规模类指标包括独立访客数和页面访问数,相应的指标定义在前文(电商总体运营指标)已经描述,在此不在赘述。
(2)流量成本累指标
单位访客获取成本。该指标指在流量推广中,广告活动产生的投放费用与广告活动带来的独立访客数的比值。单位访客成本最好与平均每个访客带来的收入以及这些访客带来的转化率进行关联分析。若单位访客成本上升,但访客转化率和单位访客收入不变或下降,则很可能流量推广出现问题,尤其要关注渠道推广的作弊问题。
(3)流量质量类指标
跳出率(Bounce Rate)也被称为蹦失率,为浏览单页即退出的次数/该页访问次数,跳出率只能衡量该页做为着陆页面(LandingPage)的访问。如果花钱做推广,着落页的跳出率高,很可能是因为推广渠道选择出现失误,推广渠道目标人群和和被推广网站到目标人群不够匹配,导致大部分访客来了访问一次就离开。
页面访问时长。页访问时长是指单个页面被访问的时间。并不是页面访问时长越长越好,要视情况而定。对于电商网站,页面访问时间要结合转化率来看,如果页面访问时间长,但转化率低,则页面体验出现问题的可能性很大。
人均页面浏览量。人均页面浏览量是指在统计周期内,平均每个访客所浏览的页面量。人均页面浏览量反应的是网站的粘性。
(4)会员类指标
注册会员数。指一定统计周期内的注册会员数量。
活跃会员数。活跃会员数,指在一定时期内有消费或登录行为的会员总数。
活跃会员率。即活跃会员占注册会员总数的比重。
会员复购率。指在统计周期内产生二次及二次以上购买的会员占购买会员的总数。
会员平均购买次数。指在统计周期内每个会员平均购买的次数,即订单总数/购买用户总数。会员复购率高的电商网站平均购买次数也高。
会员回购率。指上一期末活跃会员在下一期时间内有购买行为的会员比率。
会员留存率。会员在某段时间内开始访问你的网站,经过一段时间后,仍然会继续访问你的网站就被认作是留存,这部分会员占当时新增会员的比例就是新会员留存率,这种留存的计算方法是按照活跃来计算,另外一种计算留存的方法是按消费来计算,即某段的新增消费用户在往后一段时间时间周期(时间周期可以是日、周、月、季度和半年度)还继续消费的会员比率。留存率一般看新会员留存率,当然也可以看活跃会员留存。留存率反应的是电商留住会员的能力。

㈢ 电子商务数据分析的电子商务数据分析

电子商务相对于传统零售业来说,最大的特点就是一切都可以通过数据专化来监控和改进。通过数据可属以看到用户从哪里来、如何组织产品可以实现很好的转化率、你投放广告的效率如何等等问题。基于数据分析的每一点点改变,就是一点点提升你赚钱的能力,所以,电子商务网站的数据分析显得尤为重要。

㈣ 电商数据分析有哪些

目前电商主要分为买卖模式和平台模式,买卖模式就是自买自卖的自营模式,而平台模式是自己搭建平台,来引入品牌和店家,主要包括B2C和C2C,这种模式需要的是效率。

㈤ 电商平台应该分析哪些数据具体怎么去分析

电子商务平台需要分析的数据及分析规则如下:

一、网站运营指标:

网站运营指标主要用于衡量网站的整体运营情况。在这里,EC数据分析联盟暂时将网站运营指标分为网站流量指标、商品类别指标和供应链指标。网站流量指标主要用于考虑网站优化、网站可用性、网站流量质量和客户购买行为。

商品类别指标主要用于衡量网站商品的正常运营水平,与销售指标和供应链指标密切相关。这里的供应链指标主要是指电子商务网站的商品库存和商品配送,而不考虑商品的生产和原材料的库存和运输。

二、商业环境指标:

这里,电子商务网站经营环境指标分为外部竞争环境指标和内部购物环境指标。外部竞争环境指标主要包括市场占有率、市场拓展率、网站排名等,这些指标通常使用第三方研究公司的报告数据。与独立的B2C网站相比,淘宝在这方面的数据要准确得多。

网站内部购物环境指标包括功能指标和运营指标(这部分与之前的流量指标一致)。常见的功能指标包括商品种类的多样性、支付配送方式、网站正常运行、连接速度等。

三、销售业绩指标:

销售业绩指标与公司的财务收入直接挂钩,在所有数据分析指标体系中起着主导作用。其他数据指标可根据该指标进行细分。

网站销售绩效指标主要关注网站订单的转化率,而订单销售指标主要关注具体毛利率、订单效率、重复采购率、退货率和汇率。当然,还有很多指标,如总销售额、品牌类别销售额、总订单、有效订单等,这里没有列出。

四、营销活动指标:

营销活动的成功通常从活动效果(收入和影响)、活动成本和活动凝聚力(通常通过用户注意力、活动用户数量和客户单价来衡量)等方面来考虑。在这里,营销活动指标分为日常市场运营活动指标、广告宣传指标和对外合作指标。

其中,市场经营活动指标和广告投放指标主要考虑新增客源数量、订单数量、订单转化率、每次访问成本、每次转化收益和投资回报。而对外合作的指标则由具体的合作伙伴来确定。例如,电子商务网站与返利网合作时,首先考虑的是合作的回报。

5、客户价值指数:

顾客价值通常由三部分组成:历史价值(过去消费)、潜在价值(主要从用户行为考虑,以RFM模型为主要衡量依据)、附加价值(主要从用户忠诚度、口碑推广等方面考虑)。这里,客户价值指标分为总体客户指标和新老客户价值指标。

这些指标主要从客户贡献和购置成本两个方面来衡量。例如,我们使用访客数量、访客成本和从访客到订单的转换率来衡量总体客户价值指数。除了上述考虑之外,老客户价值的衡量更多的是基于RFM模型。

(5)电子商务平台常用数据分析扩展阅读:

电子商务中使用分析数据的优点:

数据分析体系建立之后,其数据指标并不是一成不变的,需要根据业务需求的变化实时的调整,调整时需要注意的是统计周期变动以及关键指标的变动。

一般来说,单个数据索引的分析并不能解决这个问题,而且每个索引都是相互关联的。将所有索引编织成一个网络,并根据具体需要找到每个数据索引节点。当用户在电子商务网站上有购买行为时,他们会从潜在客户转变为网站的价值客户。

电子商务网站一般将用户的交易信息,包括购买时间、购买商品、购买数量、支付金额等信息存储在自己的数据库中,因此,这些客户可以根据网站的运营数据来分析自己的交易行为,估计每个客户的价值以及为每个客户拓展营销的可能性。

参考资源来源:

网络-电子商务数据分析

㈥ 电子商务数据分析的电子商务数据分析的五个指标

电子商务数据分析体系包括网站运营指标、经营环境指标、销售业绩指标、运营活动指标和客户价值指标五个一级指标。
网站运营指标这里定为一个综合性的指标,其下面包括有网站流量指标、商品类目指标以及(虚拟)供应链指标等几个二级指标。经营环境指标细分为外部经营环境指标和内部经营环境指标两个二级指标。销售业绩指标则根据网站和订单细分为2个二级指标,而营销活动指标则包括市场营销活动指标、广告投放指标和商务合作指标等三个二级指标。客户价值指标包括总体客户指标以及新老客户指标等三个二级指标。 网站运营指标主要用来衡量网站的整体运营状况,这里Ec数据分析联盟暂将网站运营指标下面细分为网站流量指标、商品类目指标、以及供应链指标。
1.网站流量指标
网站流量指标主要用从网站优化,网站易用性、网站流量质量以及顾客购买行为等方面进行考虑。流量指标的数据来源通常有两种,一种是通过网站日志数据库处理,另一种则是通过网站页面插入JS代码的方法处理(二种收集日志的数据更有长、短处。大企业都会有日志数据仓库,以共分析、建模之用。大多数的企业还是使用GA来进行网站监控与分析。)。网站流量指标可细分为数量指标、质量指标和转换指标,例如我们常见的PV、UV、Visits、新访客数、新访客比率等就属于流量数量指标,而跳出率、页面/站点平均在线时长、PV/UV等则属于流量质量指标,针对具体的目标,涉及的转换次数和转换率则属于流量转换指标,譬如用户下单次数、加入购物车次数、成功支付次数以及相对应的转化率等。
2.商品类目指标
商品类目指标主要是用来衡量网站商品正常运营水平,这一类目指标与销售指标以及供应链指标关联慎密。譬如商品类目结构占比,各品类销售额占比,各品类销售SKU集中度以及相应的库存周转率等,不同的产品类目占比又可细分为商品大类目占比情况以及具体商品不同大小、颜色、型号等各个类别的占比情况等。
3.供应链指标
这里的供应链指标主要指电商网站商品库存以及商品发送方面,而关于商品的生产以及原材料库存运输等则不在考虑范畴之内。这里主要考虑从顾客下单到收货的时长、仓储成本、仓储生产时长、配送时长、每单配送成本等。譬如仓储中的分仓库压单占比、系统报缺率(与前面的商品类目指标有极大的关联)、实物报缺率、限时上架完成率等,物品发送中的譬如分时段下单出库率、未送达占比以及相关退货比率、COD比率等等。 一个客户的价值通常由三部分组成:历史价值(过去的消费)、潜在价值(主要从用户行为方面考虑,RFM模型为主要衡量依据)、附加值(主要从用户忠诚度、口碑推广等方面考虑)。这里客户价值指标分为总体客户指标以及新、老客户价值指标,这些指标主要从客户的贡献和获取成本两方面来衡量。譬如,这里用访客人数、访客获取成本以及从访问到下单的转化率来衡量总体客户价值指标,而对老顾客价值的衡量除了上述考虑因素外,更多的是以RFM模型为考虑基准。
数据分析体系建立之后,其数据指标并不是一成不变的,需要根据业务需求的变化实时的调整,调整时需要注意的是统计周期变动以及关键指标的变动。通常,单独的分析某个数据指标并不能解决问题,而各个指标间又是相互关联的,将所有指标织成一张网,根据具体的需求寻找各自的数据指标节点。

㈦ 电商网站订单数据分析方法

topbox(智投分析),分析网站运营数据,帮助你分析订单背后的规律,从而制定更好的营销和推广策略

㈧ 电商平台应该分析哪些数据具体怎么去分析

电商平台的数据分析,应该关注五大关键数据指标和三个关键思路。五大关键数据指标是活跃用户量、转化、留存、复购、GMV;三个关键思路是商品运营、用户运营和产品运营。

㈨ 电商数据分析常用方法有哪些

1.对比分析


横向对比:简单的说就是和谁对比?假如说我们上个月店铺的成交额增长了30%,那么我们是不是应该开心呢?


这里我们还要参考竞争对手的成交额,数据时代,我们可以很轻易的拿到竞争对手的相关数据。


纵向对比:我们可以把近15天的成交额以线条的形式显示出来,这样就可以很清楚的看到近期的成交额是否达到预期,有没有下降趋势,当然我们也可以以季度、月或周为单位。


2.转化分析


这里牵涉到一个问题,评判一家电商企业需要用到的一些日常统计指标:


店铺的目标用户数量:一家店铺的成交量,反映的是这家店铺对于市场的影响以及用户对于产品的满意度。


平均消费金额:店铺每年平均每位用户消费了多少,以此来定位目标人群,确定是否达到盈利的指标。


用户的复购率:判别产品满意度,假如用户购买过一次后,还会购买第二次,说明用户对于你的产品还是很满意的,这样既节省了市场推广费用,用户也会推荐给更多朋友来够买。


3.留存分析


我们通过活动等形式把用户引流到我们的流量池里,但是经过一段时间后,用户可能就会慢慢的流失了。那些留下来或者经常访问我们店铺的用户称之为留存。


我们常常用到的日活跃用户量、月活跃用户量、季度活跃用户量,来检测我们店铺的流量。有的时候可能会看到我们的日活,在一段时期内都是逐渐增加的,以为是非常好的现象,但是如果没有做留存分析的话,这个结果很可能是一个错误的。


留存是产品的核心,用户只有留下来,我们的产品才能不断增长。如果我们什么都不做的话,用户很快的就流失了。


4.产品比价


大部分电商公司会频繁搞促销,一般来说每次打的旗帜无非是全网最低,但是如何才能确定是全网最低呢?


这时候需要我们去搭建一个比价系统,这个比价系统的目的主要是为了去抓取各大电商平台商品的价格。通过各大电商平台的价格以及优惠额,来制定你自己的策略。


关于电商数据分析常用方法有哪些,青藤小编就和您分享到这里了。如果你对大数据工程有浓厚的兴趣,希望这篇文章能够对你有所帮助。如果您还想了解更多数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

阅读全文

与电子商务平台常用数据分析相关的资料

热点内容
人员安装培训和调试方案 浏览:745
北京网络营销出名乐云seo 浏览:165
市场营销需不需要报计算机证 浏览:642
网络营销的理解误区 浏览:319
店铺活动营销方案ppt 浏览:68
某某产品网络营销市场定位分析 浏览:490
b2c电子商务的优劣势 浏览:180
少儿书画展活动策划方案 浏览:487
小型2d游戏策划方案 浏览:891
培训机构疫情防控应急演练方案 浏览:60
产品微博推广方案 浏览:190
市场营销英文版题库 浏览:879
广州家秀电子商务有限公司 浏览:505
市场营销的社会定义和管理定义 浏览:939
北京鼎泰网络营销公司 浏览:970
杯子策划方案 浏览:675
奢侈品市场营销培训班 浏览:17
网络营销工具的优缺点分析 浏览:923
网络营销方向的论文 浏览:388
酒店微信平台策划方案 浏览:80