導航:首頁 > 活動策略 > 淘寶大數據的精準營銷案例

淘寶大數據的精準營銷案例

發布時間:2022-07-13 12:47:22

① 請問如何使用電子商務大數據分析電商化妝品的相關客戶,達到精準營銷目的請舉一個例子

有一些網店在運營的過程中,為了吸引更多的用戶,宣傳的資料過於誇內大。導致容用戶的匹配度不高,就很難成交,最終就會拉低店鋪的成交量。所以要做好精準引流,要定位好自己店鋪和寶貝的定位,然後圍繞這個定位去確定自己的目標用戶群體,再去分析用戶群的流量特性,以此來做宣傳,直擊用戶的痛點

② 大數據精準營銷是什麼哪家做的好

什麼是精準營銷,舉個簡單的例子,你家人都是移動的卡,你比較喜歡上網,你爸爸打電話比較多。移動公司後台的智能分析系統(crm),通過幾個月的數據分析,判斷出你喜歡上網,然後下發流量套餐的營銷或者活動簡訊,你爸爸不會收到,因為系統判定他不是流量用戶。
通過大數據獲取對象的喜好,行為偏好,對不同對象進行不同營銷的過程,叫做精準數據營銷。核心可以概括為幾大關鍵詞:用戶、需求、識別、體驗。
億美軟通推出數據雲服務,延續億美的客戶服務、客戶營銷、客戶管理的公司經營理念,通過龐大的消費數據資源,為客戶提供數據驗證,精準營銷等數據級服務。簡單說就是為企業提供數據驗證和數據篩選業務。可通過網路搜索「億美軟通」了解。

③ 傳統零售業的精準營銷:大數據的魅力

傳統零售業的精準營銷:大數據的魅力__數據分析師考試

當前互聯網公司對數據挖掘可謂賴以生存。目前幾乎所有的用戶體驗產生的數據都可以進行數據挖掘。從傳統零售企業走電子商務,到亞馬遜,淘寶網的精準營銷,大數據給企業帶來的價值不斷凸顯。說到大數據,很難不提到傳統的數據處理,以及大數據對於整個零售行業的影響,那麼我們應該怎麼理解大數據呢?

國內大數據公司信柏科技CEO柏林森指出:大數據是一個動態的洞察、清晰的預測的過程。有了洞察就可以慢慢走進預測。舉例來說,對於傳統的零售企業來說,他的零售模式就會遇到數據瓶頸。以前商家自己其實不知道是哪位顧客來買他的東西,就算商家有了顧客的會員卡,但是如果顧客不掏出這張卡來也是無法知道顧客是誰,即使掏出來會員卡也無法知道顧客的消費偏好及個人家庭情況等。但是有了大數據分析之後,可以對消費者進行全方位的分析,描述消費者畫像,從而對其開展個性化精準營銷。

那麼,大數據能夠讓傳統零售業脫困嗎?業內有兩種觀點。有人認為大數據只是一個數據量的加大。從kb,MB,到GB和TB,計算能力的增強必然導致數據更多;另一種觀點是大數據把原始數據從date變成了信息,再把信息變成了商業。

所以大數據是一個很好的工具,關鍵是如何是使用好這個工具,換算成數值理論的說法,就是怎麼建立網路,怎樣建立商業模式。舉個例子,商品在超市裡面賣,這個賣商品就不是一個簡單的過程。超市需要根據顧客的習慣,在不同時間,不同時段推出不同的款產品,通過什麼的樣的方式進行銷售......這些復雜的過程都需要通過大數據的分析結果進行商品配合和銷售。

隨著大數據商業應用的發展,越來越多的企業認識到大數據的價值,那麼怎麼利用創新型的大數據?一個生動的例子能夠很好的詮釋大數據。在抗日戰爭時期,軍團指揮官往往能通過繳獲的槍支和裝備來確定敵軍司令部的位置。因為繳獲的裝備高級,很大程度上就代表著司令部的位置。這個雖然不是大數據處理的典型例子,但是可以很好解釋如何利用創新型的大數據技術。

其次,還需要大數據團隊的支持。一個企業首先要有數據驅動的意識,作為企業的帶頭人應該首先做一個決策,但是決策制定後,需要一個團隊進行支持。因為很多大數據的應用都是在執行層面,如何對數據進行整合,需要各個系統的數據模型。

總之,傳統零售業向電子商務大數據轉變時,首先要進行決策分析、數據分析,數據整合,團隊執行,這樣才是一個理想的大數據變革。

以上是小編為大家分享的關於傳統零售業的精準營銷:大數據的魅力的相關內容,更多信息可以關注環球青藤分享更多干貨

④ 企業大數據實戰案例

企業大數據實戰案例

一、家電行業

以某家電公司為例,它除了做大家熟知的空調、冰箱、電飯煲外,還做智能家居,產品有成百上千種。在其集團架構中,IT部門與HR、財務等部門並列以事業部形式運作。

目前家電及消費電子行業正值「內憂外患」,產能過剩,價格戰和同質化現象嚴重;互聯網企業涉足,顛覆競爭模式,小米的「粉絲經濟」,樂視的「平台+內容+終端+應用」,核心都是經營「用戶」而不是生產。該公司希望打造極致產品和個性化的服務,將合適的產品通過合適的渠道推薦給合適的客戶,但在CPC模型中當前只具備CP匹配(產品渠道),缺乏用戶全景視圖支持,無法打通「CP(客戶產品)」以及「CC(客戶渠道)」的匹配。

基於上述內外環境及業務驅動,該公司希望將大數據做成所有業務解決方案的樞紐。以大數據DMP作為企業數據核心,充分利用內部數據源、外部數據源,按照不同域組織企業數據,形成一個完整的企業數據資產。然後,利用此系統服務整個企業價值鏈中的各種應用。

那麼問題來了,該公司的數據分散在不同的系統中,更多的互聯網電商數據分散在各大電商平台,無法有效利用,怎麼解決?該公司的應對策略是:1)先從外部互聯網數據入手,引入大數據處理技術,一方面解決外部互聯網電商數據利用短板,另一方面可以試水大數據技術,由於互聯網數據不存在大量需要內部協調的問題,更容易快速出效果;2)建設DMP作為企業統一數據管理平台,整合內外部數據,進行用戶畫像構建用戶全景視圖。

一期建設內容:技術實現上通過定製Spark爬蟲每天抓取互聯網數據(主要是天貓、京東、國美、蘇寧、淘寶上的用戶評論等數據),利用Hadoop平台進行存儲和語義分析處理,最後實現「行業分析」、「競品分析」、「單品分析」 三大模塊。

該家電公司大數據系統一期建設效果,迅速在市場洞察、品牌診斷、產品分析、用戶反饋等方面得到體現。

二期建設目標:建設統一數據管理平台,整合公司內部系統數據、外部互聯網數據(如電商數據)、第三方數據(如外部合作、塔布提供的第三方消費者數據等)。

該公司大數據項目對企業的最大價值是將沉澱的數據資產轉化成生產力。IT部門,通過建設企業統一的數據管理平台,融合企業內外部數據,對於新應用快速支持,起到敏捷IT的作用;業務部門,通過產品、品牌、行業的洞察,輔助企業在產品設計、廣告營銷、服務優化等方面進行優化改進,幫助企業進行精細化運營,基於用戶畫像的精準營銷和個性化推薦,幫助企業給用戶打造極致服務體驗,提升客戶粘性和滿意度;戰略部門,通過市場和行業分析,幫助企業進行產品布局和戰略部署。

二、快消行業

以寶潔為例,在與寶潔中國市場部的合作中發現,並不是一定要先整合內外部數據才能做用戶畫像和客戶洞察。寶潔抓取了主流網站上所有與寶潔評價相關的數據,利用語義分析和建模,掌握不同消費群體的購物喜好和習慣,僅僅利用外部公開數據,快速實現了客戶洞察。

此外,寶潔還在渠道管理上進行創新。利用互聯網用戶評論數據進行社群聆聽,監控與寶潔合作的50個零售商店相關的用戶評論,通過線上數據進行渠道/購物者研究並指導渠道管理優化。

實現過程:

1、鎖定微博、大眾點評等互聯網數據源,採集百萬級別消費者談及的與寶潔購物相關內容;

2、利用自然語言處理技術,對用戶評論進行多維建模,包括購物環境、服務、價值等10多個一級維度和50個二級維度,實現對用戶評論的量化;

3、對沃爾瑪、屈臣氏、京東等50個零售渠道進行持續監控,結果通過DashBoard和周期性分析報告呈現。

因此,寶潔能夠關聯企業內部數據,更有效掌握KA渠道整體情況,甚至進一步掌握KA渠道的關鍵細節、優勢與劣勢,指導渠道評級體系調整,幫助制定產品促銷規劃。

三、金融行業

對於消費金融來說,家電、快消的案例也是適用的,尤其是精準營銷、產品推薦等方面。這里主要分享徵信風控方面的應用。顯然,互聯網金融如果對小額貸款都像銀行一樣做實地考察,並投入大量人力進行分析評判的話,成本是很高的,所以就有了基於大數據的批量的信用評分模型。最終目的也是實現企業畫像和企業中的關鍵人物畫像,再利用數據挖掘、數據建模的方法建立授信模型。宜信的宜人貸、芝麻信用等本質上就是這個架構。

在與金融客戶的接觸中發現,不論銀行還是金融公司,對外部數據的需求都越發迫切,尤其是外部強特徵數據,比如失信記錄、第三方授權後的記錄、網路行為等。

以上是小編為大家分享的關於企業大數據實戰案例的相關內容,更多信息可以關注環球青藤分享更多干貨

⑤ 利用大數據分析法,企業如何做到精準營銷

大數據最大的價值不是事後分析,而是事前預測。在當今社會下,互聯網移動數據在迅猛發展,用戶的一些活動會在網路中以數據的形式呈現,這將會為企業帶來極大的商業利益。一方面,消費者的個性化需求不斷顯現,為企業帶來了很大的利用價值;另一方面,企業對消費者的特徵偏好不再陌生,將利用互聯網背後下的消費數據,挖掘這些數據背後的真正價值。現代社會中的大多數企業,已深深的感受到大數據可以做到精準營銷,並可以為其所帶來較大的商業價值,並不斷思考如何能將這些數據進行有效整合和充分利用,准確地分析用戶的特徵和偏好,了解用戶真正的需求,挖掘產品的潛在價值,幫助企業找到最精準的用戶,實現市場營銷的精準化、場景化,進而做到精準營銷。
案例解讀:對於電信運營商來說,按服務對象的不同,大數據的應用可分為兩種:對內應用和對外應用。典型對內應用包括內部經營分析應用、網路優化、客戶精準營銷等,例如通過適當分離存量和增量用戶,分析不同群體用戶的特徵和偏好,提高用戶轉化率和提升存量客戶的價值。譬如服裝網站Stitch fix例子,在個性化推薦機制方面,大多數服裝訂購網站採用的都是用戶提交身形、風格數據+編輯人工推薦的模式,特別之處在於結合了機器演算法推薦。通過顧客提供的身材比例,主觀數據,加上銷售記錄的交叉核對,挖掘每個人專屬的服裝推薦模型,從而做到一對一營銷。
大數據的好處:試舉一個示例:如果你想要搜集一個200份有效問卷,普通的方法就是發放。但是你需要發放多長時間呢?這個過程是否較為復雜?通常情況下,按照發問卷、填寫問卷、回收問卷、統計問卷這個思路的話,時間大約需要一個月。這樣既浪費時間,又耽誤工作。但現在不一樣了,通過使用大數據分析法,只要3小時就可以輕松完成這個過程。那是因為數據做到了發送時間的"一對一定製化",利用數據可以輕松得出某位先生通常會在哪個時間段內打開郵件,然而就會在那個時間段給他實時發送,這樣既節約時間,又提高准確性。這些都是數據細分受眾的好處。
那麼企業到底如何應用大數據做到精準營銷呢?
(1)運用大數據分析法,分析用戶的行為
通過積累數據,才能更加准確的分析出你的新老用戶的喜好和消費習慣。雖然過去大多數企業都會說顧客就是上帝,要以顧客為中心,想顧客所想,做客戶想做,但是如何真正做到這個口號呢?目前就可以應用大數據分析法,分析客戶的基本需求,這其實就是利用大數據進行營銷的前提。
(2)運用大數據分析法,營銷信息精準推送
企業如何才能將一些營銷的信息准確推送給真正需求的用戶呢?這就需要大數據分析法。那麼現在企業真正做到精準營銷還比較難,因為缺少了詳細且海量的數據,缺少了對數據詳細的分析,自然就不能夠做到真正的精準,而現在通過運用大數據分析法,分析客戶的真正需求,使營銷廣告能更精準的推送給用戶。
(3)運用大數據分析法,營銷活動投其所好
有了精準營銷,那麼企業如何做到將營銷互動推送給客戶呢?首先,企業需要明確的知道自己的產品主要傾向於什麼樣的客戶。如果企業在活動之前對受眾客戶的需求有了解,清楚的知道用戶對產品的需求,那麼生產出的產品就一定能夠投其所好。現在社會,無論是線上還是線下的產品,都可以運用大數據分析法,通過不同渠道了解客戶信息,從而在產品的營銷中做到投其所好。
(4)運用大數據分析法,篩選重點客戶
在眾多的用戶中,到底哪些是重點客戶呢?相信這樣的問題是大多數企業都想了解的。現在通過使用大數據分析法,就可以了解這類問題。通過大數據的分析,企業能夠篩選出有價值的重點客戶。針對這類重點客戶,進行精準營銷,對目標用戶進行多角度的分析,幫助企業更加了解消費者的特點。

⑥ 有沒有一個有具體數據的大數據營銷案例

暫無大數抄據營銷案例。襲
目前大數據還都是剛剛興起,第一是擁有大數據的企業很少,第二是擁有大數據且具有足夠的大數據挖掘分析的人才的企業更是屈指可數,第三是大數據挖掘分析的作用在銀行、金融、政務、電商等平台起到的作用都非常大,絕大多數的精力都還放在如何提升效率和效益上,能用於營銷的精力真的很少。

⑦ 大數據精準營銷如何做

精準營銷的實質是根據目標客戶的個性化需求設計產品和服務,而大數據就是手段。大數據精準營銷做法如下:

1、以用戶為導向。

真正的營銷從來都是以用戶為中心的,而大數據把用戶實實在在「畫」在了眼前,營銷者可以根據資料庫內的數據構建用戶畫像,來了解用戶消費行為習慣、以及年齡、收入等各種情況,從而對產品、用戶定位、營銷做出指導性的調整。

2、一對一個性化營銷。

很多銷售在推銷產品時常常會遇到這樣的問題:產品是一樣的,但是用戶的需求是各不相同的,如何把相同的產品賣給不同的用戶?這就需要我們進行「一對一」個性化營銷。利用大數據分析,可以構建完善的用戶畫像,了解消費者,從而做出精準的個性化營銷。

3、深度洞察用戶。

深度洞察用戶,挖掘用戶潛在需求,是數據營銷的基礎。利用數據標簽,可以准確獲知用戶的潛在消費需求。

例如:我們得知一位用戶曾購買過奶粉,那麼我們可以得知,家裡有小孩,相應的可以向他推送早教課程等適合嬰幼兒的產品。洞察消費者需求後再進行投放,營銷的效果將比撒網式有效且更易成交。

4、營銷的科學性。

實踐證明,數據指導下的精準營銷相對於傳統營銷來說更具有科學性。向用戶「投其所好」,向意向客戶推薦他們感興趣的東西,遠遠要比毫無目標的被動式營銷更具成效。

大數據精準營銷包含方面

1、用戶畫像

用戶畫像是根據用戶社會屬性、生活習慣和消費行為等信息而抽象出的一個標簽化的用戶模型。具體包含以下幾個維度:

用戶固定特徵:性別,年齡,地域,教育水平,生辰八字,職業,星座。

用戶興趣特徵:興趣愛好,使用APP,網站,瀏覽/收藏/評論內容,品牌偏好,產品偏好。

用戶社會特徵:生活習慣,婚戀,社交/信息渠道偏好,宗教信仰,家庭成分。

用戶消費特徵:收入狀況,購買力水平,商品種類,購買渠道喜好,購買頻次。

用戶動態特徵:當下時間,需求,正在前往的地方,周邊的商戶,周圍人群,新聞事件如何生成用戶精準畫像大致分成三步。

2、數據細分受眾

在執行大數據分析的3小時內,就可以輕松完成以下的目標:精準挑選出1%的VIP顧客發送390份問卷,全部回收 問卷寄出3小時內回收35%的問卷 5天內就回收了超過目標數86%的問卷數所需時間和預算都在以往的10%以下。

3、預測

「預測」能夠讓你專注於一小群客戶,而這群客戶卻能代表特定產品的大多數潛在買家。當我們採集和分析用戶畫像時,可以實現精準營銷。這是最直接和最有價值的應用,廣告主可以通過用戶標簽來發布廣告給所要觸達的用戶。

這裡面又可以通過上圖提到的搜索廣告,展示社交廣告,移動廣告等多渠道的營銷策略營銷分析,營銷優化以及後端CRM/供應鏈系統打通的一站式營銷優化,全面提升ROI。

4、精準推薦

大數據最大的價值不是事後分析,而是預測和推薦,我就拿電商舉例,"精準推薦"成為大數據改變零售業的核心功能。

數據整合改變了企業的營銷方式,現在經驗已經不是累積在人的身上,而是完全依賴消費者的行為數據去做推薦。未來,銷售人員不再只是銷售人員,而能以專業的數據預測,搭配人性的親切互動推薦商品,升級成為顧問型銷售。

⑧ 如何利用大數據做到對客戶的精準營銷

大數據營銷等同於精準營銷,或是精準營銷是大數據營銷的一個核心方向和價值體現。然而,數據本身不會產生價值。為此,我們要把數據組織成數據資源體系,再對數據進行層次、類別等方面的劃分。在此基礎上,通過分析數據資源和相關部門的業務對接程度,以此發揮數據資源體系在管理、決策、監測及評價等方面的作用,從而產生大數據的大價值,真正實現了從數據到知識的轉變,為領導決策提供服務依據本例根據工作實踐。
本例以三個工作實例,展示如何通過對數據分析進行對客戶的精準營銷。
工具/原料

大數據營銷
大數據營銷三個案例分析

案例一:筆者在銀行工作,通過對儲戶身份證信息進行海量剖析,發現一個有趣的現象,即購買理財產品的客戶以40-50歲的女性居多。
根據這一信息,有經驗的理財經理通過身份證信息即能准確的分析出支行有哪些符合條件的客戶,迅速的對新推出的理財產品進行電話營銷,做到不出門即可實現銷售,較快的完成了銷售任務。
而另一些更具創新性的理財經理,通過身份證信息,在情人節期間組織了網點沙龍客戶邀約活動,對符合18-30歲、30-45歲這兩個年齡段的男性客戶進行了電話營銷,通過贈送愛人鮮花、化妝品以及高價值的禮品進行金融產品營銷,較好的引起男性客戶的興趣,有力的拉升了業績增長。
這些數據分析手段就能夠做到個性化營銷和定位,加強對客戶的認知,為客戶找到價值,從而帶動銷量。
案例二:在與供電部門合作期間,供電部門提供了一條信息,市裡每一天上網高峰期主要集中在中午12點之後和晚上的12點之前。供電部門認為,出現這種「怪現象」的原因是因為現在的人們普遍睡覺前都會有上網的習慣。
這條信息當時很多人沒有注意,似乎與銀行搭不上關系,但我們市場經營部門的一個年輕的大學生針對人們這種「強迫症」,通過手機銀行與商家合作,在晚上12點進行促銷秒殺活動,即推動了手機銀行業務量的提升,同時也帶動商家銷量的倍增,實現了雙贏。
案例三:在為企業代發工資數據中,我們曾發現一個現象,即一般企業員工代發帳戶每月都會沉澱一定的余額,金額不大,1000元也有,幾千的也有,長期不動的也有,活期利率很低,但是這些客戶的帳戶金額又達不到理財產品的起售金額,這些客戶工資用了也就用了,成了「月光族」,沒有理財理念。
如何通過分析這些數據信息直接進行客源組織,為這些具有相同需求的人群量身定做金融服務,並享受」一客(群)一策「的定製服務,我們進行專題研究。
最終,我們在零存整取、基金定投和適時到帳理財產品上進行了產品打包宣傳,同步利用信用卡宣傳,幾場現場專題沙龍下來,引起了不少企業員工的注意和興趣,著實為這些收入不高的人群提供了一條實實在在的理財渠道。
這三個小故事就是對歷史數據進行挖掘的結果,反映的是數據層面的規律,它通過對大量的數據系統中提取、整合有價值的數據,從而實現從數據到知識、從信息到知識、從知識到利潤的轉化。
簡單來說就是:5個合適,在合適的時間、合適的地點、將合適的產品以合適的方式提供給合適的人。
5
具體來講,當我們通過對完成數據分析之後,找出相同的規律,當然還有一些個性化數據體現,為此具體的應用場景需要根據企業、業務的具體情況進行精準營銷策劃、設計。
概括來講,我們需要以下三個步驟:
第一步:數據採集,了解用戶,通過收集用戶所有的數據,主要包括靜態信息數據、動態信息數據兩大類,靜態數據就是用戶相對穩定的信息,如性別、地域、職業、消費等級等,動態數據就是用戶不停變化的行為信息,如消費習慣、購買行為等;
第二步:分析這些數據,給客戶畫像,畫像代表客戶對營銷內容有興趣、偏好、需求等,分析推算客戶的興趣程度、需求程度、購買概率等;
第三步,也就是最後一步,將這些畫面綜合起來,拼成一張較為完整的圖,這樣我們對客戶就有了一個大概的了解。

⑨ 大數據時代,怎麼做好精準營銷

大數據時代下的精準營銷是指通過大數據獲取對象的喜好,行為偏好,對不同對象進行不同營銷。 營銷實驗室Convertlab的DMHub透過多觸點渠道抓取信息,分析並標簽化用戶,充分挖掘用戶數據價值,推送相關營銷內容。

⑩ 大數據時代,招商快車十大精準營銷案例

大數據時代,招商快車十大精準營銷案例

2015年,招商快車——中國最大全渠道大數據營銷服務供應商大動作頻頻,先後與志高、蒙牛、迪士尼、茅台集團、太太樂、三九集團、長松咨詢、上海證大、昂立教育、優速通達十大知名品牌達成深度戰略合作——從企業營銷代運營到大數據精準營銷匹配服務。截止目前,招商快車銷售額同比增長350%,一線合作企業佔比60%,勢態喜人。互聯網+大數據時代的來臨,招商快車勇於突破,敢於先行,DSP商機速配平台、DMP數據營銷平台應運而生,全渠道大數據營銷服務供應商駐足當代。

2015年是「互聯網+」發展的元年,李克強總理在兩會期間提出「互聯網+」行動計劃,互聯網首次寫入國家政策綱要,標志著互聯網產業在新常態經濟下的重要作用。隨著互聯網+戰略的不斷深化,大數據的話題在新媒體環境下裂變式傳播,大數據一詞也慢慢被大眾所熟知,特別是在「雲計算」和「物聯網」的廣泛應用,大數據的價值越來越受重視和關注。2015年9月5日,國務院發布的《促進大數據發展行動綱要》,全面推進大數據發展和應用;奧巴馬的競選團隊依據選民的微博,實時分析選民對總統競選人的喜好,無不標志著大數據時代的到來。

思路決定出路。大數據時代如山洪猛獸滾滾而來,招商快車基於超過2000萬的渠道商、創業者精準資料庫,截止日前,招商快車已完成超過2000萬IT軟硬體設備升級的投入,打造以DSP商機速配平台為核心、以DMP營銷數據平台為有力支撐的兩大超級平台。依託大數據營銷智能化應用、服務,致力於為處於不同生命周期的中國企業,圍繞營銷及金融價值鏈中所產生的商業困惑,提供一站式商業模式定位、渠道系統建設、營銷內核構造、營銷教練、營銷外包、O2O解決方案、全網營銷、微商解決方案、DMP營銷數據應用、DSP商機速配服務、金融增值服務等全渠道大數據營銷服務。

十大精準營銷案例。由於商業模式成功升級以及IT軟硬體設備的成功導入,招商快車先後與志高、蒙牛、迪士尼、茅台集團、太太樂、三九集團、長松咨詢、上海證大、昂立教育、優速通達十多家國內外知名企業達成深度合作,銷售額同比增長350%,一線品牌企業客戶佔比60%,創下歷史新高。

(2015招商快車十大經典案例)

以志高為例,招商快車結合雙方知名度及影響力,為志高制定「互聯網+家電+大數據營銷」戰略,一、提供營銷拓展代運營服務;二、依託招商快車DMP營銷數據平台為志高提供大數據營銷配套;三、全渠道招商落地執行,幫助志高擴大國內外市場佔有率,持續推進志高集團由「中國製造」向「中國創造」產業升級。

大數據時代背景下的全球經濟,是一場以信息科技為核心的商業革命,它將顛覆傳統經濟形式、重構全球經濟格局新興產業鏈。招商快車成功升級商業模式,致力於幫助中國企業提高生產力、降低運營成本,減少運營盲區,使資源配置合理化,經濟效益最大化,從而實現國民經濟與商業價值的戰略雙贏。

以上是小編為大家分享的關於大數據時代,招商快車十大精準營銷案例的相關內容,更多信息可以關注環球青藤分享更多干貨

閱讀全文

與淘寶大數據的精準營銷案例相關的資料

熱點內容
同道品牌營銷 瀏覽:58
市場營銷畢業論文的摘要 瀏覽:873
變電站工程創優策劃方案 瀏覽:933
淘寶推廣代運營方案 瀏覽:403
白酒市場營銷策劃書 瀏覽:933
生日派對策劃方案思維導圖 瀏覽:814
市場營銷類培訓 瀏覽:671
陝西志道電子商務有限公司怎麼樣 瀏覽:21
教育機構市場營銷實習心的體會 瀏覽:820
市場營銷模擬比賽總結 瀏覽:290
10人繞八字比賽策劃方案 瀏覽:171
且康電子商務業務助理 瀏覽:320
運用市場營銷理論設計店鋪 瀏覽:625
無人酒店的網路營銷 瀏覽:495
4s店市場營銷策劃案 瀏覽:750
影響銀行市場營銷活動 瀏覽:17
網路營銷講座心得體會 瀏覽:3
濟南即開促銷活動 瀏覽:156
書法興趣培訓方案 瀏覽:872
誠品佳電子商務官網 瀏覽:271