導航:首頁 > 營銷策劃 > 大數據營銷案分析報告

大數據營銷案分析報告

發布時間:2023-09-19 03:26:18

1. 如何寫好網路營銷分析報告

買就是多關注,做好網路運營調查,報告就是整合有用信息,根據情況給出建議,可是沒有調查是做不到的,所以沒有調查就沒有發言權!

我一般按照下面幾個步驟來做分析,分享給你,希望有所幫助:

1、網路環境分析:

藉助各類大數據平台,查詢產品相關的數據。比如:通過網路後台關鍵詞工具,可以清晰的查詢某些詞的搜索量。以此判斷網路市場的大體情況。

2、網路競品分析:

知己知彼,百戰不殆:目前網路上有哪些競品,最強的幾家是哪幾家?他們都採用什麼樣的推廣方式?各自主打的訴求是什麼?

3、目標客戶分析:

目標客戶最聚集的平台是哪些?消費卜逗者的需求是怎麼產生的?消費者要的到底是什麼?選擇過程最關注的的點是哪些?目前最大的痛點是什麼?

4、企業自身優勢劣勢分析:

結合企業自身情況,進行swot分析。

5、網路營銷定位:

根據以上分析,選擇適合的網路推廣方向,制定可行的網路營銷計劃

6、實施步驟、預算預估。

詳細列清楚執行的工作內容、執行步驟,預估費用,以及效果預估。

1、行業環境。企業產品有多少同行在做網路營銷,也就是對手環境,了解行業內營銷使用情況。

2、自身環境,有沒有能力做這個、會不會做個,如何配備人力、財力、物力。分析的時候,就是對手做的什麼方式營銷,做多久了。自己需要怎麼做,計劃是什麼,如何評估效果等。

網路營銷在我國還處於發展階段,正在穩步快速發展,但還有許多不成熟。網路的法律法規有待進一步健全型敗賣和完善,人們對網路營銷的認識和了解有待進一步深入和提高。如何寫好分析報告呢?簡單總結以枯大下幾點。

一、行業環境。企業產品有多少同行在做網路營銷,也就是對手環境,了解行業內營銷使用情況。

二、自身環境,有沒有能力做這個、會不會做個,如何配備人力、財力、物力。

分析的時候,就是對手做的什麼方式營銷,做多久了。自己需要怎麼做,計劃是什麼。

三,內容概要、當前營銷狀況分析1、市場狀況分析。2、產品狀況分析。3、競爭狀況分析。4、分銷狀況分析。5、宏觀環境狀況分析。

四、營銷戰略制訂(STP、4PS)六、行動方案七、營銷預算八、營銷控制分析結構評述一、內容概要對主要營銷目標和措施的簡短摘要,目的是使管理部門迅速了解計劃的主要內容,抓住計劃的要點。

五,當前營銷狀況。主要提供該產品目前營銷狀況的有關背景資料,包括市場、產品、競爭、分銷以及宏觀環境狀況的分析。1、市場狀況列舉目標市場的規模及其成長性的有關數據、顧客的需求狀況等。

2、產品狀況列出企業產品組合中每一個品種的近年來的銷售價格、市場佔有率、成本、費用、利潤率等方面的數據。3、競爭狀況識別出企業的主要競爭者,並列舉競爭者的規模、目標、市場分額、產品質量、價格、營銷戰略及其他的有關特徵,以了解競爭者的意圖、行為,判斷競爭者的變化趨勢。

4、分銷狀況描述公司產品所選擇的分銷渠道的類型及其在各種分銷渠道上的銷售數量。5、宏觀環境狀況主要對宏觀環境的狀況及其主要發展趨勢作出簡要的介紹,包括人口環境、經濟環境、技術環境、政治法律環境、社會文化環境,從中判斷某種產品的命運。

望採納

第一,行業環境。企業產品有多少在做網路營銷,也就是對手的環境,了解行業內營銷使用情況。

第二,自身環境有沒有能力做這這個。自身的優勢在哪裡,如何配備人力物力財力。分析的時候就是對手做什麼方式的營銷,做了多久,他們的優勢在哪裡,缺陷在哪裡,自己需要結合實際情況怎麼做,要有詳細的計劃,還有就是如何評估效果等。



把握三個原則即可:

1、概況說清楚

2、指標抓精準

3、後續說明白

概況說清楚

這里可遵循《金字塔原則》,雖然是一個原則,但是居然用了一本書來概括,出完一還出二,也是有點醉。

不過不用害怕,不要著急到當當上買書,或者到處找免費閱讀資源。

馮唐老師早就用一篇博客文章說了什麼叫金字塔原則以及怎麼用金字塔原則,外加考證出了這個原則我國老子幾千年前就在用了。文化自信杠杠的。

部分內容抄錄如下:

進了麥肯錫公司,我被訓練的第一個玩意兒是金字塔原則。後來證明,這也是之後諸多訓練中,最寶貴最有用的玩意兒。

闡明金字塔原則的是一個叫Minto的外國老太太,面容慈祥,金頭發金鏈子金鐲子,言語嘮叨。她_里_唆寫了一大本書,其實,我用一百字就能說清楚。Minto沒學好自己闡明的金字塔原則,或者是故意_嗦,充字數印書賣錢得版稅,不用再在麥肯錫每周工作八十小時,當苦力加速身體折舊。

用一句話說,金字塔原則就是,任何事情都可以歸納出一個中心論點,而此中心論點可由三至七個論據支持,這些一級論據本身也可以是個論點,被二級的三至七個論據支持,如此延伸,狀如金字塔。

這些事情可以很復雜,如:我們是什麼,我們從哪裡來,我們要到哪裡去,世界經濟五年的走勢,以及中國社會保障體系的建立等等。這些事情也可以很簡單,如:小賈見到姑娘為什麼會臉紅,老媽每天喝半斤白酒是不是很危險,以及當高中時候的夢中情人問你、她現在該不該帶著三歲的女兒離婚、你如何回答等等。

對於金字塔每一層的支持論據,有個極高的要求:MECE(),即彼此相互獨立不重疊,但是合在一起完全窮盡不遺漏。不遺漏才能不誤事,不重疊才能不做無用功。

金字塔原則看似廢話,但確實是一個偉大的原則,一個偉大的方法論。

偉大用途之一,解決問題:當你嘗試解決問題時,你從下到上,收集論據,歸納出中心思想,從而建造成堅實的金字塔。有了這個大致的目標,問題解決起來最有效。

偉大用途之二,管理手下:如果你是領導,有經驗,有手下,對於某個問題,你根據經驗提出假設,迅速列出第一級三至七個支持論據,分別交待給不同的手下。兩周後,手下提交報告,你匯總排列,從而建造成堅實的金字塔。有了這個原則,管理起來最有效,領導做得最輕松。

偉大用途之三,交流成果:問題已經解決,金字塔已經建成,需要交流的時候,你從上到下,從金字塔尖尖向領導匯報。過去皇帝早朝殿議,給你三分鍾,現在你在電梯里遇到領導,給你三十秒,你只匯報中心論點和一級支持論據,領導明白了,事情辦成了。如果領導和劉備一樣三顧你的茅廬,而且臀大肉沉,從早飯坐到晚飯,吃空你家冰箱。你有講話的時間,他有興趣,你就匯報到第十八級論據,為什麼三分天下,得蜀而能有其一。有了這個原則,交流起來最有效。

你遵循金字塔原則,在報告中將概況說清楚,讀(領)者(導)可能看到第三頁就知道你做了什麼、取得了什麼效果。讀(領)者(導)在第一時間得知了想知道的信息,本身就會有一種滿足感(無論效果如何),如果你的效果不錯,那麼此時讀(領)者(導)的心裡已經像流過了甘泉一樣甜美清涼。

指標抓精準

接下來就是用專業、精準的數字來證明你剛才得出的結論有多麼正確了(此刻依舊是在遵循金字塔原則)

不同目的的營銷策略不同,衡量標准當然也會不同。假如這一次的目標是引新,那麼新用戶就非常重要。如果這一次的目標是促活,那麼看新用戶就沒啥用處,要看的是活動結束後一段時期內的核心日活增長量。

選用精準的指標展現結果,而不是平鋪直敘的數字,在數據分析報告中非常重要。

1、它能讓老闆覺得你專業;

2、它能讓老闆免去自己計算的步驟,直接看到想知道的結果;

3、最重要的是,你能清晰你的營銷思路,提升你自己的營銷技能,讓你的下一次營銷更精彩。

指標抓的准不準,其實跟你數學好不好沒有啥關系,反而取決於你對業務的了解程度、用戶的把握程度、對市場的洞察程度。

當然,要讓讀(領)者(導)認可,看懂了、打動了、記住了,還需要一些「講故事的技巧」,講什麼故事?當然是數據故事啊~

————>這里補充一個講述數據故事的四原則

1、5秒規則:讓你的KPI打頭陣

你的看板應該在5秒之內,甚至一眼之間,就讓人得到相關的信息。

為什麼?

研究表明,消費者對任何一種商業信息傳播的關注興趣取決於5秒鍾的時間,

如果你不能在5秒內讓消費者對你的信息產生興趣,消費者的下一個關注點可能就會落在你的競爭對手身上。

看板也遵循同樣的規則。如果你不能在5秒之內把觀者最關心的信息展現出來,就無法在剩餘的時間里讓觀者專注地聽你講下去。所以這就是為什麼——

99%的看板,都是由KPI打頭陣的。

2、看板邏輯:倒金字塔結構

既然是用看板講故事,那麼就需要一些「寫作」技巧。在這里千萬不要玩兒意識流或是梨花體了,倒金字塔結構是最好的。

這種寫作方法起源於美國南北戰爭,由於當時電報業務剛開始投入使用,稿件傳輸時常中斷,所以記者們想出一種新的發稿方法:重要的事情寫前面!然後再寫次重要的,最後是其它細節。

用在看板上就是,把你的結論、或最重要的發現、最值得考量的指標放在最前面——又一次符合了「5秒規則」;中間是可以支持、說明觀點的圖表;最後,是一些更高粒度的細節,供觀者鑽得更深,或是探索得更遠。

3、極簡主義:少即是多

每個看板應該包括5-9個可視化圖表。

有些分析師認為,如果想展示全局,應該提供盡可能豐富的細節。然而理想傾向於豐滿,現實卻偏愛骨感——認知心理學發現,人腦一次只能理解7+-2個信息,所以看板中的圖表數量,最好也在5~9之間。超過這個數目,只會造成信息干擾。

如果真的需要怎麼辦?可以藉助過濾器。舉個例子,比起製作一套華東銷售指標、一套華南銷售指標,不如只做一套銷售指標,並根據地域添加過濾器,讓觀者自己選擇。

或是利用下鑽功能,表面上是一張圖表,但可以通過滑鼠的點擊,可以不斷深究,直到回答所有問題。

總之,好的看板只講一個故事,一次講述就讓人聽懂。

4、為數據選擇合適的圖表類型

還記得我們之前說過的,優秀的看板可以「正確表達數據的意義」,那麼,為你的數據找到合適的圖表類型,就至關重要了。

在選擇之前,先問自己想要用數據表達什麼?

l如果是關聯:可選擇氣泡圖,用來表示兩個、或更多變數之間的聯系;

l如果是比較:可選擇條圖,按照強調的方式可以排列任何順序,適用於高亮Top3或Top5數據;

l如果是構成:可以選擇餅圖,展示每一部分所佔全部的百分比;

l如果是分布:可以選擇柱圖,展示有多少項目(頻率)會落入一個具有一定特徵的數據段中,也可以用來表示含有較少數據值的趨勢變化關系。

你可以將這四個原則運用到製作數據分析報告的實踐中去,以KPI打頭陣、採用倒金字塔結構、不過多鋪陳無關細節、為合適的指標選擇合適的圖表類型,做到這四個基本點,你的報告讀起來會非常流暢。

後續說明白

最後,後續要說明白。

什麼是「後續」?

就是[下一步]。

你分析的目的不是匯報,而是找出經驗與教訓,運用到下一次的活動中去。

結果不好都沒關系,只要這次「不好」,為下次的「好」指明了方向,就是好!

所以,要寫清楚,根據分析的結果,得出了什麼結論,下一步要怎麼做。


2. 一份完整的數據分析報告

一份完整的數據分析報告

一份完整的數據分析報告。現代社會屬於大數據時代,而數據分析報告是非常重要的,一份完整的數據分析報告並不好寫。接下來就由我帶大家詳細的了解下一份完整的數據分析報告的相關內容。

一份完整的數據分析報告1

報告是項目的結果展示,是數據分析結果的有效承載形式。一份思路清晰,言簡意賅地數據分析報告能直戳問題痛點,提高溝通效率,獲得領導賞識。

對於數據分析報告,首先要有一個概念性的認識,按照報告陳述的思路,可分為四類:

這四類報告由淺入深,分析難度遞增,對企業決策的支持程度也遞增,尤其是當企業面臨某個決策難題時,分析工作要做得足夠系統和深刻。

這四類報告我們可以做個比喻。

描述類報告類似記敘文,像個掃描儀一樣描繪市場輪廓,不求最深但求最全。

因果類報告類似議論文,像打水井,集中一點,一直探到底。

預測類報告類似科幻小說,像個預言家,根據市場的過去推斷市場的未來。

咨詢類報告類似推理小說,像小馬過河,投石問路,根據分析結論指導企業一路前行。

報告結構

撰寫報告前先理清楚三個問題:

寫什麼內容?用什麼結構?如何論述?

寫什麼內容由決策難題決定,是投資?戰略?營銷還是其他,相應的報告也就有了相應的內容。

好的報告要求重點突出、主次分明、層次清晰。報告要依附內容的分析以及領導或其他人的閱讀習慣,但最重要的是遵循一定的結構化思維。

報告的常見構成

舉個例子,比如我用PPT展示一個網民調查的報告

1、標題頁: 標題頁用於寫報告題目,為了方便歸檔,日夜也應當註明,還有報告撰寫者和其單位所在部門。

2、目錄頁: 目錄頁將報告的各模塊呈現給讀者,方便閱讀和了解報告結構。

3、分析背景和項目說明: 用於闡述項目需求、分析目的、市場情況、以讓讀者了解項目的前因後果。項目說明用於註明假設、數據來源等。

4、分析思路頁: 這是整個報告的靈魂,便於理解報告的邏輯思路。

5、結論建議頁: 結論建議頁放在主題前,主要是為了給高層看時,結論建議可大幅度節省時間,簡明扼要。

6、分析主體頁面: 這里就要搬上你的各種數據表,數據分析圖。與表之間,圖與圖之間的聯系如何闡述,反映出的問題如何表達,這些都是在做數據分析圖表就要弄明白的。很多細心的領導及專門會針對你的數據分析以及結論來提問,因為現狀和未來是他們最關心的。所以你的數據展示一定要體現你的分析思路。

我曾經就被懟過一次,原因是數據分析結果展示於思路脫節,導致領導一直個為什麼,那個怎麼來,這個數據缺乏依據等等。因為當初的分析報告只是在展示數據,分析不透徹,表之間切換太過生硬,至今記憶猶新。後來,在做數據分析時,我製作一個表,或者一個圖,每個表或者圖都對不同維度做了深入的數據分析表,領導一問為什麼,我就點擊進去展示給他看明細,這用的就是FineBI的聯動鑽取和螺旋式分析功能,在展示時也能實時分析(以往的文章有提過)。

7、附錄頁:附錄頁目的是透明分析過程,常防止受訪者的基本資料。

報告的論述

一份好的報告,光有好的結構還不夠,還要有好的論述,關於論述,有幾個注意事項。

1、數據可靠,界定嚴謹

報告的數據來源一定要可靠。寫一份報告,獲取和整理數據往往會占據 6成以上的時間。要規劃數據協調相關部門組織數據採集、搭建體系平台、導出處理數據,最後才是寫報告,為了結論准確有效,你要保證數據的可靠性,否則一切都可能會變成誤導決策的努力。

界定是指報告中要對數據的來源、計算、概念做說明。不同的界定,有不同的結論。比如什麼是高端微波爐,不同的界定,得到的數據肯定是不同的。

2、概念一致,標准統一

一些名詞的解釋和定義,前後要一致,不要讓人不知所雲。

3、直觀呈報,通俗易懂

我們寫得報告還是金亮圖標話,用生動的圖表代替數字和文字的大量對切往往更形象直觀地理解你的.分析和結論。

一份完整的數據分析報告2

1、你要一個故事

我自己有個想法,就是產品經理應該多學習相關領域的知識,比如學一些基礎的設計規范、交互原則、營銷知識,心理學知識,演算法知識等等。除了一些明顯的對工作的幫助,也能幫助自己擴展思路。其實做好報告,就應向咨詢機構或者投資機構學習。

一個報告核心不是包含很多內容,讓聽眾或者讀者去花時間理解,核心是講好一個簡單的故事。咨詢和投資機構做BP之前,會先花時間理清楚storyline。其實各種報告都應該這樣,先理清楚你要講的故事。

2、一個數據分析報告的框架

這里列出一個我個人比較喜歡的報告框架,可能針對不同的報告場景需要有所調整(比如刪除部分步驟,或者增加部分細節):

項目背景:簡述項目相關背景,為什麼做,目的是什麼

項目進度:綜述項目的整體進程,以及目前的情況

名詞解釋:關鍵性指標定義是什麼,為什麼這么定義

數據獲取方法:如何取樣,怎麼獲取到的數據,會有哪些問題

數據概覽:重要指標的趨勢,變化情況,重要拐點成因解釋

數據拆分:根據需要拆分不同的維度,作為細節補充

結論匯總:匯總之前數據分析的主要結論,作為概覽

後續改進:分析目前存在的問題,並給出解決改進防範

致謝

附件:詳細數據

項目背景 & 項目進度

項目背景,需要簡述項目相關背景,為什麼做,目的是什麼。項目進度,需要綜述項目的整體進程,以及目前的情況。這兩點其實沒什麼可說的,如果對象是項目成員,可以寫簡單一些,如果對象是對項目不了解的人,則需要多寫 一些,但還是要盡量用最簡單的話,跟別人講明白。

名詞解釋 & 數據獲取方法

名詞解釋:關鍵性指標定義是什麼,為什麼這么定義。這點是很多人忽略的,其實很多時候數據的誤解都是因為對指標沒有統一的定義。舉例而言,點擊率可以是點擊次數/瀏覽次數,也可以是點擊人數/瀏覽人數。人數可能按訪問去重,也可能按天去重。如果沒有清晰的解釋,不同人理解不同,對整個數據的可讀性就大打折扣。

數據獲取方法:如何取樣,怎麼獲取到的數據,會有哪些問題。原始數據往往有一些缺憾,要經過數據清洗剔除雜訊,也需要部分假設進行數據補全。數據清洗和數據補全的方法需要跟匯報對象說明並且獲得認可,讓對方對於置信度有一個估計。

數據概覽 & 數據拆分

數據概覽,需要有重要指標的趨勢,變化情況,重要拐點成因解釋。

數據拆分,需要根據需要拆分不同的維度,作為細節補充。

這里基本上就是之前說的數據分析方法了。如果需要對方知道對比或者趨勢,則使用圖,如果需要對方知道具體數據,則使用表。表格對需要強調的數字要做明顯標識。需要注意的點是:核心指標要少而關鍵,拆分指標要有意義且詳細。同時如果是PPT的話,每頁說明白一個結論或者解釋清楚一個趨勢足以。關鍵性結論要用一句話能說清楚。

結論匯總 & 後續改進

結論匯總,基本是對之前數據分析階段的數據進行匯總,形成完整的結論。

後續改進,需要在數據分析的結論和問題的基礎上,對後續的迭代和改進措施作出方向性的說明。這部分其實很多時候也是分析的根本目的。

致謝 & 附件

致謝是對項目組合相關協助部門的致謝,基本上對於項目組和相關協助部門而言,也希望自己的工作或者積極配合能看到有效的數據結果。在之後的合作中,也會更加融洽。

附件是需要附贈更多沒有必要在數據報告中體現但是仍然有價值的數據。對於PPT而言,這部分也可以放在PPT致謝之後,與會同事有疑問,可以隨時翻到最後解釋。

3、總結

一個產品,如果你不能衡量它,你就不能了解它,自然而然,你就無法改進它。這是說數據。

而數據報告的意義也是類似,項目完成之後需要完整匯報,這樣無論是對上匯報還是對團隊而言,都是有重要意義。

突然想到一個事情。去年的時候做了一個內部數據平台,到了取名字的時候,我用了dice。為什麼叫dice呢?

這得從物理說起(開啟神棍模式)。物理學不斷前行,之前人們認為物理學是決定論的,只要知道系統的初始值和足夠細節,就能知道之後系統的演化路徑。後來發現不是這樣的,對於一個基本粒子而言,觀測之前,粒子狀態和位置是不可預測的。愛因斯坦說「上帝不會擲骰子」,然後後續的研究,更多的是支持上帝是擲骰子的。這也是dice的來源。

即使是上帝視角,也不可能知道提前知道數據的結果。那麼作為產品經理而言,尊重數據結果,並分析形成結論,遠比相信一些所謂的方法論的條條框框好得多。

一份完美的數據分析報告讓你高人一籌

企業需要發展就需要得到更多信息,這些信息需要有專業能力的人才提供給企業,而這就是數據分析師,數據分析師要通過專業的手段獲取信息,對信息做整合,分析信息,最終形成數據分析統計報告。

在數據分析師的全部工作流程中,數據分析統計報告作為工作的成果是對企業、以及項目的最終發展方向及目標的決策起到至關重要的依據。

在編寫一份完整的數據分析報告前,這些數據報告給誰看,首先你要知道你的這份報告要突出那些點,在做一個數據分析之前領導所關心的哪些點,圍繞著這些中心點,簡單明了的進行編寫數據報告。

數據報告不需要大批量的文字闡述,本身數據分析是圍繞數據為核開展相應的工作,數據報告要突出的也是最終的統計結果,以數字的方式進行簡單明了的闡述對比,報告中加入一些畫像模型,柱線圖、餅狀圖來表示佔有份額等等最為突出,讓閱覽者可以很好的理解,很容易在你的這份報告中找到自己企業在市場的份額,這是作為一個優秀的數據分析師的基本功。

先展示自己在行業內的情況後還要分析當前整個市場的數據變化走勢,通過對自身行業市場的大數據統計,找到市場發展新的切入點、客戶們所關心的新問題、潛在客戶的特徵最終形成走勢圖為企業提供發展方向。

哪些點是我們不足的地方,哪些是我們需要開展的新業務等等,這些都會從行業數據大趨勢發展中體現出來,從而為企業未來的發展決策提供參考依據,為企業領導提供新的信息點,幫助企業思考、創新、完善做出一份滿意的答卷。

3. 如何將大數據與具體營銷現象結合 ,分析其優缺點400字左右

大數據近來非常火爆,幾乎各個領域都在談論,包括人工智慧,營銷等,對於我們市場營銷領域的人來說,肯定更關注的是營銷了,所以大數據到底該如何與市場營銷相結合呢?這個就是我們今天所要討論的重點了。

作為營銷人員,幾乎每天肯定都在焦慮:營銷效果如何?營銷計劃是否可行?投入有多少流失了,廣告有沒有投錯的地方·····以前這些問題很難有個准確的答案,我們也就只能憑借經驗去判斷和調整,但現在營銷人員可以通過大數據來找到一部分答案了。

隨著互聯網的發展,各種社交媒體、移動端平台多樣化,用戶每天活躍在眾多分散的媒體平台中,並且有著自己的觀察和思考,這使得以前由商家單向將產品推送給用戶的方式效果受到極大影響,甚至還有一些用戶要求參與到品牌的生產、研發、營銷全過程中,因此在信息爆炸時代中,用戶與企業之間的關系發生了巨大變化,以用戶為中心,以用戶需求為導向進行營銷成為必然趨勢,這可謂是營銷者們的一個新的挑戰。

那麼怎樣才能打動用戶?這對現在的營銷人員來說是個非常高的要求。根據相關數據表示,現在有多數用戶至少要通過三次傳播才可以打動他們,通常來自不同的渠道;而定製化的營銷則更能引起消費者的注意,如果能收集到他們的年齡,性別、興趣愛好以及前一次購買記錄等信息,就可以分析出用戶下一次可能購買的興趣點,從而企業可以進行一些定製化的推廣,這樣就能有效的提升產品點擊率和購買轉化等,實際上,這種方式正是利用的大數據分析的方法。其實,現在營銷人員完全可以將大數據為己所用,利用新的營銷思維去推動技術成長,又能將數據技術融合到戰略、思考和執行中,通過技術驅動營銷,讓營銷引領技術,利用大數據營銷,甚至可以有效完成企業營銷的轉型。

雖然現在很多企業都擁有消費者數據,但只有建立全方位的消費者資料庫才能真正的做到消費洞察。例如:陝西拓方信息技術有限公司就基於其多年規模化營銷管理服務的專業支撐經驗,並結合對數據分析、營銷渠道發展與服務行業的深刻洞察,推出的一款精準獲客產品 —— 「嘲風」精準獲客平台,它通過與企業大資料庫或「智拓雲」DMP數據服務平台快速對接,能夠對客戶歷史大數據進行比對分析,然後將廣告精準的投放給滿足的需求的用戶,跟蹤投放達到激發客戶的購買慾望。同時它也是一個從營銷管理到數據整合分析再到線索跟進最終銷售成單,所有流程一步到位的精準獲客平台。據了解,「嘲風」現在可以滿足不同行業不同產品和不同營銷團隊的企業需求,從而提升企業服務營銷的效能和收益率。

所以說,企業想要利用大數據進行精準營銷,市場營銷人員要學會利用大數據。注重市場調研,將大數據的信息作為基礎應用到市場營銷的活動中,收集並分析大量的數據信息,只有這樣才能在環境和市場的變化有很大不確定性的情況下做出正確的決策。

4. 大數據攻略案例分析及結論

大數據攻略案例分析及結論

我們將迎來一個「大數據時代」。與變化相始終的中國企業,距離這場革命還有多遠?而追上領先者又需要多快的步伐?

{研究結論}

■大數據營銷的本質是一個影響消費者購物前心理路徑的問題,而這在大數據時代前很難做到。

■對於傳統企業而言,要打通線上與線下營銷,實現新的商業模式,如O2O等,離不開大數據。

■雖然大數據應用往往集中於大數據營銷,但對於一些企業,大數據的應用早已超越了營銷范疇,全面進入了企業供應鏈、生產、物流、庫存、網站和店內運營等各個環節。

■對於大部分企業,由於數據分析人員與業務人員之間的彼此視角與思考方向不同,大數據分析和運營之間存在脫節情況,這是大數據無法用於企業運營最大的阻力

■對於大多數互聯網公司來說,大數據量、大用戶量是一個相互促進,強者越強的循環過程。

■對於大型互聯網平台,大數據已經成為其生態循環中的血液,對於這些企業,最重要

的不是如何利用大數據改進自身運營,而是利用大數據更好地繁榮平台生態。

■對於平台企業,它們的大數據策略正逐漸從大數據運營,向運營大數據轉變,前者和

後者的差別在於,前者只是運營改進的動力,而後者則成為企業實現未來戰略的核心資源。

我們都已被反復告知:我們將迎來一個「大數據時代」。

大數據應用,將和雲計算、3D列印這些技術變革一樣,顛覆既有規則,並成為先行企業的制勝關鍵。

與變化相始終的中國企業,距離這場革命還有多遠?而追上領先者又需要多快的步伐?

來自於互聯網、移動互聯網、物聯網感測器、視頻採集系統的數據正海量增長,匯成大數據的海洋,相伴的是海量數據存儲、分析技術的突破性發展,所有這一切都給企業的應用帶來了無限可能性。

中國企業家研究院對當前中國企業大數據應用的狀況進行了歸納分類,以幫助企業了解實際應用大數據時的困局難點,並提供領先企業的典型案例以資借鑒。

表1

表2

大數據運營—企業提升效率的助推力

對於大多數企業而言,運營領域的應用是大數據最核心的應用,之前企業主要使用來自生產經營中的各種報表數據,但隨著大數據時代的到來,來自於互聯網、物聯網、各種感測器的海量辯笑虧數據撲面而至。於是,一些企業開始挖掘和利用這些數據,來推動運營效率的提升。大數據運營應用中,大數據的應用分為三類:用於企業外部營銷、用於內部運營,以及用於領導層決策。

一、大數據營銷

大數據營銷的本質是影響目標消費者購物前的心理路徑,它主要應用在三個方面:1、大數據渠道優化,2、精準營銷信息推送,3、線上與線下營銷的連接。在消費者購物前,通過各種方式,直接介入其信息收集和決策過程。而這種介入,是建立在對於線上與線下海量用戶數據分析的基礎之上。相比傳統狂轟濫炸或等客上門的營銷,大數據營銷無論在主動性和精準性方面,都有非常大的優勢。它是目前主要的大數據應用領域。

大數據營銷不僅僅是用大數據找出目標顧客,向其發布促銷信息,它還可以做到:

實現渠道優化。根據用戶的互聯網痕跡進行渠道營銷效果優化,就是根據互聯網上顧客的行為軌跡來找出哪個營銷渠道的顧客來源最多,哪個來源顧客實際購買量最多,是否是目標顧客等等,從而調整營銷資源在各個渠道的投放。例如東風日產,它利用對顧客來源的追蹤,來改進營銷資源在各個網路渠道如門戶網站、搜索和微博的投放。

精準營銷信息攜神推送。精準建立在對海量消費者的行為分析基礎之上,消費者網路瀏覽、搜索行為被網路留下,線下的購買和查看等行為可以被門店的POS機和視頻監控記錄,再加上他們在購買和注冊過程中留下的身份信息,在商家面前,正逐漸呈現出消費者信息的海洋。

一些企業通過收集海量的消費者信息,然後利用大數據建模技術,按消費者屬升猛性(如所在地區、性別)和興趣、購買行為等維度,挖掘目標消費者,然後進行分類,再根據這些,對個體消費者進行營銷信息推送。比如孕婦裝品牌十月媽咪通過對自己微博上粉絲評論的大數據分析,找出評論有「喜愛」相關關鍵詞的粉絲,然後打上標簽,對其進行營銷信息推送。京東商城副總經理李曦表示:「用大數據找出不同細分的顧客需求群,然後進行相應的營銷,是京東目前在做的事情。」小也化妝品將自身網站作為收集消費者信息的雷達,對不同消費者推薦相應的肌膚解決方案,創始人肖尚略希望在未來,大數據營銷能替代網站的作用,真正成為面向顧客的前端。

打通線上線下營銷。一些企業將互聯網上海量消費者的行為痕跡數據與線下購買數據打通,實現了線上與線下營銷的協同。比如東風日產,線上與線下的協同營銷方式為:其門戶網站帶來訂單線索,而通過這些線索,服務人員進行電話回訪,從而推動顧客在線下交易。在此過程中,東風日產記錄了消費者進入、瀏覽、點擊、注冊、電話回訪和購買各個環節的數據,實現了一個橫跨線上線下,以大數據分析為支持的,營銷效果不斷優化的閉環營銷通路。而國雙科技,衡量某一地區線下促銷活動的效果,就是看互聯網上,來自這個地區對於促銷內容的搜索量。一些企業,通過鼓勵線下顧客使用微信和Wi-Fi等可追蹤消費者行為和喜好的設備,來打通線上與線下數據流,銀泰百貨計劃鋪設Wi-Fi,鼓勵顧客在商場內使用,然後根據Wi-Fi賬號,找出這個顧客,再通過與其它大數據挖掘公司合作,以大數據的手段,發掘這個顧客在互聯網的歷史痕跡,來了解這個顧客的需求類型。

二、大數據用於內部運營

相比大數據營銷,大數據在內部運營中的應用更深入,對於企業內部的信息化水平,以及數據採集和分析能力的要求更高。本質上,是將企業外部海量消費者數據與企業內部海量運營數據聯系起來,在分析中得到新的洞察,提升運營效率。(詳見P96表5:大數據在內部運營中的應用)

表5

三、大數據用於決策

在大數據時代,企業面對眾多新的數據源和海量數據,能否基於對這些數據的洞察,進行決策,進而將其變成一項企業競爭優勢的來源?同大數據營銷和大數據內部運營相比,運用大數據決策難度最高,因為它需要一種依賴數據的思維習慣。

已有少數企業開始嘗試。比如國內一些金融機構在推出一個金融產品時,會廣泛分析該金融產品的應用情況和效果、目標顧客群數據、各種交易數據和定價數據等,然後決定是否推出某個金融產品。

但是,中國企業家研究院在調研中發現,目前中國企業當中,大數據決策的應用非常之少,許多企業領導者進行決策時,仍習慣於憑借歷史經驗和直覺。

大數據產品——企業利潤滋長的新源泉

大數據除了用於運營外,還能夠與企業產品結合,成為企業產品背後競爭力的核心支持或者直接成為產品。提供大數據產品的企業分為兩類,直接提供大數據產品的企業,以及將大數據作為產品和服務核心支撐的企業。前者主要為大數據產業鏈中提供數據服務的參與者,包括數據擁有者、存儲企業,挖掘企業、分析企業等,後者則主要是那些以大數據為產品核心支撐的企業,它們大多是互聯網企業,其產品和服務先天就有大數據基因,這些企業包括搜索引擎、在線殺毒、互聯網廣告交易平台以及眾多植根於移動互聯網之上,為用戶提供生活和資訊服務的APP等。

表3

表4

一、大數據作為產品核心支持

它們主要在以下幾方面使用大數據:

1、提供信息服務。很多互聯網企業通過對海量互聯網信息和線下信息的整合和分析,為個人和企業提供信息服務,典型的如網路、去哪兒、一淘、高德地圖、春雨醫生等等。在美國,一些互聯網企業甚至根據大數據提供更深度的預測信息服務,美國科技創新公司farecast,通過分析特定航線機票的價格,幫助消費者預測機票價格走勢。

2、分析用戶的個性化需求,藉此提供個性化產品和服務,或者實現更精準的廣告。典型的有移動社交工具陌陌、網路、騰訊、廣告交易平台品友互動以及一些互聯網游戲商。這種應用往往先是收集海量用戶的互聯網行為數據,將用戶分類,根據不同類型的用戶,提供個性化的產品,或者提供個性化的促銷信息。比如網易等門戶網站推出了訂閱模式,讓使用者按照個人喜好方便地定製和整合不同來源的信息。

3、增強產品功能。對於很多互聯網產品,如殺毒軟體、搜索引擎等等,海量數據的處理能夠讓產品變得更聰明更強大,如果沒有大數據,產品的功能就大大減弱。比如奇虎360公司的360殺毒軟體,憑借每天海量的殺毒處理,建立了龐大的病毒庫,這使它能夠更快地發現病毒,而一些小的殺毒軟體公司則無法做到這一點。

4、掌控信用狀況,提供信貸服務。阿里巴巴上匯集了海量中小企業的日常資金與貨品往來,通過對這些往來數據的匯總與分析,阿里巴巴能發現單個企業的資金流與收入情況,分析其信用,找出異常情況與可能發生的欺詐行為,控制信貸風險。

5、實現智能匹配。婚戀網站、交易平台等,利用大數據可以進行精準而高效的配對服務。網易花田會挖掘用戶行為數據,比如點擊哪些異性的頁面,發表什麼樣的評論,建立用戶興趣模型,從而挖掘到用戶所期待另一半的類型,然後主動推薦與對方匹配度比較高的人選。2010年,阿里巴巴嘗試性地推出「輕騎兵」服務,由阿里巴巴將中國各產業集群地的供應商與海外買家的個性采購需求進行快速匹配,所憑借的,就是對供應商的海量交易數據信息的整合與挖掘。

二、大數據直接作為產品

對一些企業,大數據直接成為了產品,這些產品包括海量數據、分析、存儲與挖掘的服務等,目前大數據產業鏈正在形成過程中,出現了一批開放、出售、授權大數據和提供大數據分析、挖掘的公司和機構,前者主要是一些擁有海量數據的公司,將數據服務作為新的盈利來源。如大型的互聯網平台、民航、電信運營商、一些擁有大數據的政府機構等等,後者主要包括一些能夠存儲海量數據或者將海量數據與業務場景結合,進行分析和挖掘,或者提供相關產品的公司,如IBM、SAP、拓而思、天睿公司。它們為大數據應用者們提供海量數據存儲、數據挖掘、圖像視頻、智能分析等服務以及相關系統產品。

大數據平台——企業群落繁榮的滋養劑

而網路已建成了包括網路指數、司南、風雲榜、數據研究中心和網路統計在內的五大數據體系平台,幫助其營銷平台上的企業了解消費者行為、興趣變化,以及行業發展狀況、市場動態和趨勢、競爭對手動向等信息。

為解決這些問題,各個平台在積極地努力。比如阿里巴巴建立了數據委員會,在統一數據格式標准、從源頭上保證數據的質量,採集和加工出精細化的數據,確保其能符合平台企業的應用場景等方面,不遺餘力地嘗試。尤其在大數據精細化方面,阿里巴巴更是作為其大數據戰略的重點。這方面,騰訊目前也在加快步伐。比如新版騰訊網出現了「一鍵登錄」的提示,用戶可以在上面通過一些細分標簽,訂閱自己關注的內容。實際上,這也是騰訊收集更精細化的用戶興趣數據的一個有效手段。

Tips

大數據實戰手冊

將大數據應用於內部運營中時,企業會遇到一些常見問題

1企業如何獲取與分析數據?

互聯網是大數據的一個主要來源,一些線下的傳統企業很難獲得。但它們可以:

a和擁有或能抓取海量數據的平台、企業以及政府機構合作。比如淘寶上的電商就購買淘寶收集的海量數據中與自身運營相關的部分,用於自身業務。再如卡夫通過與IBM合作,在博客、論壇和討論版的內容中抓取了47.9萬條關於自己產品的討論信息,通過大數據分析出消費者對卡夫食品的喜愛程度和消費方式。

b建立自己在互聯網上的平台,比如朝陽大悅城利用自己的微信、微博等平台收集消費者評論數據。

c許多傳統企業沒有分析海量數據的能力,此時它們可以和大數據分析和挖掘公司合作,目前市場上已經有天睿公司、IBM、百分點、華勝天成等一批提供大數據分析和挖掘服務的公司,它們是傳統企業進行大數據分析可以藉助的力量。

2如何避免大數據應用時的部門分割?

對於許多企業,其信息流被各部門彼此分割,數據難以互通,對於這種情況下,大數據的共享和匯集就只是一個泡影,更難以實現大數據的深度應用。

要打通部門之間信息分割的局面,首先要建立統一的、集中的數據系統。就像立白信息與知識總監王永紅所說的,「要真正用好大數據,企業要採用大集中的信息系統。」從更深入的角度來談,企業信息流的部門分割,更在於企業部門之間的分割,比如有一些企業的營銷按照渠道分割,導致對於顧客的大數據收集和分析效果大打折扣。

IBM智慧商務技術總監楊旭青認為,「很多時候由於組織結構問題,大數據分析有效性大大降低了。」這就需要組織與流程層面的重新設計,在這方面,阿里巴巴的部門負責人輪崗制度,對於打破部門壁壘無疑是一劑好葯。而一些企業為了打破部門分割,建立了矩陣型的組織結構,強化部門間的橫向合作,這些無疑為大數據的匯集、共享與應用創造了良好條件。

3如何讓業務人員重視大數據的應用?

解決這個問題,一方面在於一把手對整個企業數據文化的倡導,比如1號店董事長於剛就要求業務人員無論在開會,還是匯報工作時,都以數據說話,而馬雲更是將大數據提升到了戰略高度。

另一方面,也在於數據部門的帶動,阿里巴巴數據委員會負責人車品覺分享了經驗,「因為運營部門的業務人員很難看到大數據的潛力,可以首先從一些對業務見效快,見效顯著的數據項目出發,通過一兩個項目的成功,調動對方的積極性,然後再逐步一個個地引導。」

4為何大數據工作與運營需求脫節?

這往往是由於數據人員與業務人員視角、專業知識不同而導致的。大數據人員做了很多努力,但是業務人員卻認為這些努力無關痛癢。如何解決這個問題?

有的企業從組織設計上發力,將大數據納入業務分析部門的管理之下,用業務統馭數據。對於朝陽大悅城,由主要負責戰略和經營分析的部門來管理大數據工作,其中的大數據分析人員則作為支持人員。在負責人張岩看來,大數據要靠商業法則指導,關鍵是找到業務需求的點,然後由數據分析和挖掘人員實現。在具體操作中,大悅城對微信的數據挖掘,挖掘什麼樣的關鍵詞,由業務分析人員確定,而具體挖掘則由數據部門做;有的企業從流程設計上著手,推動業務部門與數據部門人員之間的溝通,建立數據人員工作與效果掛鉤的考核機制。

例如阿里巴巴根據數據挖掘的成效(比如帶來的商品轉化率的提升)來考核數據挖掘師,考核數據分析師則看其分析結果能否出現在經營負責人的報告中。從數據部門自身角度則需要降低運營部門使用數據的障礙和門檻,比如立白集團的數據人員會努力嘗試向運營部門提供更易懂、更生動的圖形化數據分析界面,在立白老闆辦公室上,就有一份「客戶運營健康體檢表」,讓老闆對全國經銷商的當月銷售情況一目瞭然。再如阿里巴巴開發的無線Bi,讓經營人員在手機上也可以看到大數據分析結果,拿車品覺的話說,「以數據之氧氣包圍經營人員。」

5. 大數據技術在網路營銷中的策略研究論文

大數據技術在網路營銷中的策略研究論文

從小學、初中、高中到大學乃至工作,說到論文,大家肯定都不陌生吧,論文的類型很多,包括學年論文、畢業論文、學位論文、科技論文、成果論文等。那要怎麼寫好論文呢?以下是我幫大家整理的大數據技術在網路營銷中的策略研究論文,歡迎閱讀與收藏。

摘要:

當今,隨著信息技術的飛速發展,互聯網用戶的數量日益增加,進一步促進了電子商務的快速發展,並使企業能夠更准確地獲取消費者數據,大數據技術應運而生。該技術已被一些企業用於網路營銷,並取得了顯著的營銷效果。本文基於大數據的網路營銷進行分析,分析傳統營銷存在的問題和挑戰,並對大數據技術在網路營銷中的作用進行研究,最後針對性地提出一些基於大數據的網路營銷策略,以促進相關企業在大數據時代加強網路營銷,並取得良好的營銷效果。

關鍵詞:

大數據;網路營銷;應用策略;營銷效果;

一、前言

現代社會已經完全進入了信息時代,在移動互聯網和移動智能設備飛速發展與普及之下,消費者的消費數據都不斷被收集、匯總並處理,這促進了大數據技術的發展。大數據技術可以精準的分析消費者的習慣,藉助大數據技術,商家可以針對顧客進行個性化營銷,極大地提高了精準營銷的效果,傳統的營銷方式難以做到這一點。因此,現代企業越來越重視發展網路營銷,並期望通過大數據網路營銷以增加企業利潤。

二、基於大數據的網路營銷概述

網路營銷是互聯網出現之後的概念,初期只是信息爆炸式的轟炸性營銷。後來隨著移動智能設備的普及、移動互聯網的發展以及網路數據信息的海量增長,大數據技術應運而生。大數據技術是基於海量的數據分析,得出的科學性的結果,出現伊始就被首先應用於網路營銷之中。基於大數據的網路營銷非常精準,是基於海量數據分析基礎上的定向營銷方式,因此也叫著數據驅動營銷。其主要是針對性對顧客進行高效的定向營銷,最為常見的就是網路購物App中,每個人得到的物品推薦都有所區別;我們瀏覽網路時,會不斷出現感興趣的內容,這些都是大數據營銷的結果。

應用大數據營銷,企業可以精準定位客戶,並根據客戶的喜好與類型對產品與服務進行優化[1],然後向目標客戶精準推送。具體來說,基於大數據技術的精準網路營銷過程涉及三個步驟:首先是數據收集階段。企業需要通過微博、微信、QQ、企業論壇和網站等網路工具積極收集消費者數據;其次,數據分析階段,這個階段企業要將收集到的數據匯總,並進行處理形成大數據模型,並通過數據挖掘技術等高效的網路技術對數據進行處理分析,以得出有用的結論,比如客戶的消費習慣、消費能力以及消費喜好等;最後,是營銷實施階段,根據數據分析的結果,企業要針對性地制定個性化的營銷策略,並將其積極應用於網路營銷以吸引客戶進行消費。基於大數據的網路營銷其基本的目的就是吸引客戶主動參與到營銷活動之中,從而提升營銷效果和經濟收益。

三、傳統網路營銷存在的一些問題

(一)傳統網路營銷計劃主要由策劃人主觀決定,科學性不足

信息技術的迅速發展,使得很多企業難以跟上時代的步伐,部分企業思想守舊,沒有跟上時代潮流並開展網路營銷活動,而是仍然繼續使用傳統的網路營銷模型和方式。即主要由策劃人根據自己過去的經驗來制定企業的營銷策略,存在一定的盲目性和主觀性,缺乏良好的信息支持[2]。結果,網路營銷計劃不現實,難以獲得有效的應用,導致網路營銷的效果不好。

(二)傳統網路營銷的互動性不足,無法進行准確的產品營銷

傳統的網路營銷互動性較差,主要是以即時通信軟體、郵箱、社交網站以及彈窗等推送營銷信息,客戶只能被動的接受信息,無法與企業進行良性互動和溝通,無法有效的表達自己的訴求,這導致了企業與客戶之間的割裂,極大的影響了網路營銷的效果。此外,即使一些企業獲得了相關數據,也沒有進行科學有效的分析,但卻沒有得到數據分析的結果,也沒有根據客戶的需求進行有效的調整,從而降低了營銷活動的有效性。

(三)無法有效分析客戶需求,導致客戶服務質量差

當企業進行網路營銷時,缺乏對相關技術的關注以及對客戶需求的分析的缺乏會導致企業營銷策略無法獲得預期的結果。因此,企業只能指望出於營銷目的向客戶發布大量營銷內容。這種營銷效果非常糟糕。客戶不僅將無法獲得有價值的信息,而且此類信息的「轟炸」也會使他們感到煩躁和不耐煩,這將適得其反,並降低客戶體驗[3]。

四、將基於大數據的網路營銷如何促進傳統的網路營銷

(一)使網路營銷決策更科學,更明智

在傳統的網路營銷中,經理通常根據過去的經驗來制定企業的營銷策略,盲目性和主觀性很多,缺乏可靠的數據。基於大數據的網路營銷使用可以有效地收集有關市場交易和客戶消費的數據,並利用數據挖掘技術等網路技術對收集到的數據進行全面科學的分析與處理,從中提取有用的相關信息,比如客戶的消費習慣、喜好、消費水平以及行為特徵等,從而制定針對客戶的個性化營銷策略,此外,企業還可以通過數據分析獲得市場發展變化的趨勢以及客戶消費行為的趨勢,從而對未來的市場形勢作出較為客觀的判斷,進而幫助企業針對未來一段時間內的行為制定科學合理的'網路營銷策略,提升企業的效益[4]。

(二)大大提高了網路營銷的准確性

如今,大數據驅動的精準網路營銷已成為網路營銷的新方向。為了有效地實現這一目標,企業需要在啟動網路營銷之前依靠大數據技術來准確分析大量的客戶數據,以便有效地捕獲客戶的消費需求,並結合起來制定準確的網路營銷策略[5]。此外,在實施網路營銷策略後,積極收集客戶反饋結果並重新分析客戶評論,使企業對客戶的實際需求有更深刻的了解,然後制定有效的營銷策略。如果某些企業無法有效收集客戶反饋信息,則可以收集客戶消費信息和歷史消費信息,然後對這些數據進行准確的分析,從而改善企業的原始網路營銷策略並進行促銷以獲取准確的信息,進而制定有效的網路營銷策略。

(三)顯著提高對客戶網路營銷服務水平

通過利用大數據進行准確的網路營銷,企業可以大大改善客戶服務水平。這主要體現在兩個方面:一方面可以使用大數據准確地分析客戶的實際需求,以便企業可以進行有針對性的的營銷策略,可以大大提高客戶服務質量。另一方面,使企業可以有效地吸收各種信息,例如客戶興趣、愛好和行為特徵,以便向每個客戶發布感興趣的推送內容,以便客戶可以接收他們真正需要的信息,提高客戶滿意度。

五、基於大數據的網路營銷優勢

(一)提高網路營銷廣告的准確性

在傳統的網路營銷中,企業傾向於使用大量無法為企業帶來相應經濟利益的網路廣告進行密集推送,效率低下。因此,必須充分利用大數據技術來提高網路營銷廣告的准確性。首先,根據客戶的情況制定策略並推送合適的廣告,消費場景在很大程度上影響了消費者的購買情緒,並可以直接確定消費者的購買行為。如果客戶在家中購買私人物品,則他們第二天在公司工作時,卻同送前一天相關私人物品的各種相關的廣告。前一天的搜索行為引起的問題可能會使消費者處於非常尷尬的境地,並影響他們的購買情緒。這表明企業需要有效地識別客戶消費場景並根據這些場景發布更准確的廣告[6]。一方面,通過IP地址來確定客戶端在網路上的位置。客戶在公共場所時,廣告內容應簡潔明了。另一方面,可以通過指定時間段來確定推送通知的內容。在正確的時間宣傳正確的內容。其次,提高客戶選擇廣告的自主權。在傳統的網路營銷中,企業通常採用彈出式廣告,插頁式廣告和浮動廣告的形式來強力吸引客戶的注意力,從而引起強烈的客戶不滿。一些客戶甚至會毫不猶豫地購買廣告攔截軟體,以防止企業廣告。在這方面,大數據技術可用於改善網路廣告的形式和內容並提高其准確性。

(二)提高網路營銷市場的定位精度

在諸如電子郵件營銷和微信營銷之類的網路營銷方法中,一個普遍現象是企業擁有大量的粉絲,並向這些粉絲發送了大量的營銷信息,但是卻沒有得到較好的反饋,營銷效果較差。造成這種現象的主要原因是企業產品的市場定位不正確。可以通過以下幾個方面來提高網路營銷市場中的定位精度:

1、分析客戶數據並確定產品在市場上的定位:

首先,收集大量基本數據並創建客戶資料庫。在此過程中,應格外小心,以確保收集到的有關客戶的信息是全面的。因此,可以使用各種方法和渠道來收集客戶數據。例如,可以通過論壇、企業官方網站、即時通信軟體以及購物網站等全面的收集客戶的各種信息。收集完成後利用高效的數據分析處理技術對信息進行處理,並得出結果,包括客戶的年齡、收入、習慣以及消費行為等結果,然後根據結果對企業的產品進行定位,並與客戶的需求相匹配,進而明確市場[7]。

2、通過市場調查對產品市場定位進行驗證:

在利用大數據及時對企業產品進行市場定位之後,有必要對進一步進行市場調查,以進一步清晰產品的市場定位,如果市場調查取得較為滿意的效果,則表明網路營銷策略較為成功,可以加大推廣力度以促進產品的銷售,如果效果不滿意,則要積極分析問題,尋找原因並提出針對性的解決改進措施,以獲得較為滿意的結果[8]。

3、建立客戶反饋機制:

客戶反饋機制可以有效的幫助企業改進產品營銷策略,主要體現有兩個主要功能:一是營銷產品在市場初步定為成功後可以通過客戶反饋積極征詢客戶的意見,並進一步改進產品,確保產品更適應市場;二是如果營銷產品市場定位不成功,取得的效果不佳,可以通過客戶反饋概括定位失敗的原因,這將有助於將來的產品准確定位。

(三)增強網路營銷服務的個性化

為了增強網路營銷服務的個性化,企業不僅必須能夠使用大數據識別客戶的身份,而且還必須能夠智能地設計個性化服務。首先,通過大數據了解客戶的身份。一方面,隨著網路的日益普及,企業可以在網路上收集客戶各個方面的信息。但是,眾所周知,由於互聯網管理的不規范與復雜性,大多數信息不是高度可靠的,甚至某些信息之間存在著極為明顯的矛盾。因此,如果企業想要通過大數據來了解其客戶的身份,則必須首先確保所收集的信息是可信且准確的。另一方面,企業必須能夠從大量的客戶信息中選擇最能體現其個性的關鍵信息,並降低分析企業數據的成本[9]。二是合理設計個性化服務。個性化服務的合理設計要求企業在兩個方面進行運營:一方面,由於現實環境的限制,企業無法一一滿足所有客戶的個性化需求。這就要求企業盡一切努力來滿足一部分客戶的個性化需求,並根據一般原則開發個性化服務。另一方面,如果完全根據客戶的個人需求向他們提供服務,則企業的服務成本將不可避免地急劇上升。因此,企業應該對個性化客戶服務進行詳細分析,並嘗試以適合其個人需求的方式為客戶提供服務,而不會給企業造成太大的財務負擔。

六、基於大數據網路營銷策略

使用大數據的准確網路營銷模型基本上包括以下步驟。首先,收集有關客戶的大量信息;其次,通過數據分類和分析選擇目標客戶;第三,根據分析的信息制定準確的網路營銷計劃;第四,執行營銷計劃;第五,評估營銷結果並計算營銷成本;第六,在評估過程的基礎上,進一步改善,然後更准確地篩選目標客戶。在持續改進的過程中,上述過程可以改善網路營銷。因此,在大數據時代,電子商務企業必須突破原始的廣泛營銷理念,並採用新的營銷策略。

(一)客戶檔案策略

客戶檔案意味著在收集了有關每個人的基本信息之後,可以大致了解每個人的主要銷售特徵。客戶檔案是准確進行電子商務促銷的重要基礎,也是實現精確營銷目標的極其重要的環節。電子商務企業利用客戶檔案策略可以獲得巨大收益。首先,藉助其專有的銷售平台,電子商務企業可以輕松,及時且可靠地收集客戶使用情況數據。其次,在傳統模型中收集數據時,由於需要控製成本,因此經常使用抽樣來評估數據的一般特徵[10]。大數據時代的數據收集模型可以減少錯誤並提高數據准確性。當分析消費者行為時最好以目標消費者為目標。消費者行為分析是對客戶的消費目的和消費能力的分析,可幫助電子商務企業更好地選擇合適的目標客戶。在操作中,電子商務企業需要在創建資料庫後繼續優化分析結果,以最大程度地分析消費者的偏好。

(二)滿足需求策略

為了滿足多數人的需求,傳統的營銷方法逐漸變得更加同質。結果,難以滿足少數客戶的特殊需求,並且導致利潤損失。基於大數據客戶檔案技術的電子商務企業可以分析每個客戶的需求,並採取差異化人群的不同需求最大化的策略,從而獲取較大的利潤。為了滿足每個客戶的需求,最重要的是實現差異化,而不僅僅是滿足多數人的需求,因此必須准確地分析客戶的需求,還必須根據客戶的需求提供更多個性化的產品[11]。比如當前,定製行業非常流行,賣方可以根據買方提供的信息定製獨特的產品,該產品的利潤率遠高於批量生產線。

(三)客戶服務策略

隨著網路技術的逐步發展,電子商務企業和客戶可以隨時進行通信,這基本上消除了信息不對稱的問題,使客戶可以更好地了解他們想要購買的產品以及遇到問題時的情況。當出現問題時,可以第一時間解決,提高交易速度。因此,當電子商務企業制定用於客戶服務的營銷策略時,一切都以客戶為中心。為了更好地實施此策略,必須首先改善資料庫並加深對客戶需求的了解[12]。二是提高售前、售後服務質量,開展集體客戶服務培訓,縮短客戶咨詢等待時間,改善客戶服務。最後,我們必須高度重視消費者對產品和服務的評估,及時糾正不良評論,並鼓勵消費者進行更多評估,良好的服務態度和高質量的產品可以大大提高目標客戶對產品的忠誠度,並且可以吸引消費者進行第二次購買。

(四)多平台組合策略

在信息時代,人們可以在任何地方看到任何信息,這也將分散他們的注意力,並且重新定向他們的注意力已經成為一個大問題。如果希望得到更多關注,則可以組合跨多個平台的營銷策略,並在網路平台和傳統平台上混合營銷。網路平台可以更好地定位自己並吸引更多關注,而傳統平台則可以更好地激發人們的購買慾望。平台融合策略可以幫助電子商務企業擴大獲取客戶的渠道,不同渠道的用戶購買趨勢不同,可以改善資料庫[13]。

七、結語

總體而言,大數據時代不僅給網路營銷帶來了挑戰,而且還帶來了新的機遇。大數據分析不僅可以提高准確營銷的效果,更好地服務消費者,改變傳統的被動營銷形式,並提升網路營銷效果。

參考文獻

[1]劉儉雲.大數據精準營銷的網路營銷策略分析[J].環球市場,2019(16):98.

[2]栗明,曾康有.大數據時代下營業網點的精準營銷[J].金融科技時代,2019(05):14-19.

[3]劉瑩.大數據背景下網路媒體廣告精準營銷的創新研究[J].中國商論,2018(19):58-59.

[4]李研,高書波,馮忠偉.基於運營商大數據技術的精準營銷應用研究[J].信息技術,2017(05):178-180.

[5]袁征.基於大數據應用的營銷策略創新研究[J].中國經貿導刊(理論版),2017(14):59-62.

[6]邱媛媛.基於大數據的020平台精準營銷策略研究[J].齊齊哈爾大學學報(哲學社會科學版),2016(12):60-62.

[7]張龍輝.基於大數據的客戶細分模型及精確營銷策略研究[J].河北工程大學學報(社會科學版),2017,34(04):27-28.

[8]李巧丹.基於大數據的特色農產品精準營銷創新研究——以廣東省中市山為例[J].江蘇農業科學,2017,45(06):318-321.

[9]孫洪池,林正傑.基於大數據的B2C網路精準營銷應用研究——以中國零售商品型企業為例[J].全國流通經濟,2016(12):3-6.

[10]趙玉欣,王艷萍,關蕾.大數據背景下電商企業精準營銷模式研究[J].現代商業,2018(15):46-47.

[11]張冠鳳.基於大數據時代下的網路營銷模式分析[J].現代商業,2014(32):59-60.

[12]王克富.論大數據視角下零售業精準營銷的應用實現[J].商業經濟研究,2015(06):50-51.

[13]陳慧,王明宇.大數據:讓網路營銷更「精準」[J].電子商務,2014(07):32-33.

;

6. 大數據分析時代對市場營銷的影響研究

下面我為你准備的關於市場營銷的論文,歡迎閱讀借鑒,希望對大家有幫助。

一、數據分析時代演變歷程

(一)數據1.0時代

數據分析出現在新的計算技術實現以後,分析1.0時代又稱為商業智能時代。它通過客觀分析和深入理解商業現象,取締在決策中僅憑直覺和過時的市場調研報告,幫助管理者理性化和最大化依據事實作出決策。首次在計算機的幫助下將生產、客戶交互、市場等數據錄入資料庫並且整合分析。但是由於發展的局限性對數據的使用更多的是准備數據,很少時間用在分析數據上。

(二)數據2.0時代

2.0時代開始於2005年,與分析1.0要求的公司能力不同,新時達要求數量分析師具備超強的分析數據能力,數據也不是只來源於公司內部,更多的來自公司外部、互聯網、感測器和各種公開發布的數據。比如領英公司,充分運用數據分析搶佔先機,開發出令人印象深刻的數據服務。

(三)數據3.0時代

又稱為富化數據的產品時代。分析3.0時代來臨的標準是各行業大公司紛紛介入。公司可以很好的分析數據,指導合適的商業決策。但是必須承認,隨著數據的越來越大,更新速度越來越快,在帶來發展機遇的同時,也帶來諸多挑戰。如何商業化地利用這次變革是亟待面對的課題。

二、大數據營銷的本質

隨著顧客主導邏輯時代的到來以及互聯網電商等多渠道購物方式的出現,顧客角色和需求發生了轉變,世界正在被感知化、互聯化和智能化。大數據時代的到來,個人的行為不僅能夠被量化搜集、預測,而且顧客的個人觀點很可能改變商業世界和社會的運行。由此,一個個性化顧客主導商業需求的時代已然到來,大數據沖擊下,市場營銷引領的企業變革初見端倪。

(一)大數據時代消費者成為市場營銷的主宰者

傳統的市場營銷過程是通過市場調研,採集目前市場的信息幫助企業研發、生產、營銷和推廣。但是在大數據以及社會化媒體盛行的今天,這種營銷模式便黯然失色。今天的消費者已然成為了市場營銷的主宰者,他們會主動搜尋商品信息,貨比三家,嚴格篩選。他們由之前的注重使用價值到更加註重消費整個過程中的體驗價值和情境價值。甚至企業品牌形象的塑造也不再是企業單一宣傳,虛擬社區以及購物網站等的口碑開始影響消費者的購買行為。更有甚者,消費者通過在社交媒體等渠道表達個人的需求已經成為影響企業產品設計、研發、生產和銷售的重要因素。

(二)大數據時代企業精準營銷成為可能

在大數據時代下,技術的發展大大超過了企業的想像。搜集非結構化的信息已經成為一種可能,大數據不單單僅能了解細分市場的可能,更通過真正個性化洞察精確到每個顧客。通過數據的挖掘和深入分析,企業可以掌握有價值的信息幫助企業發現顧客思維模式、消費行為模式。尤其在今天顧客為了彰顯個性,有著獨特的消費傾向。相對於忠誠於某個品牌,顧客更忠誠與給自己的定位。如果企業的品牌不能最大化地實現客戶價值,那麼即使是再惠顧也難以保證顧客的持續性。並且,企業不能奢望對顧客進行歸類,因為每個顧客的需求都有差別。正是如此,大數據分析才能更好地把握顧客的消費行為和偏好,為企業精準營銷出謀劃策。

(三)大數據時代企業營銷理念――“充分以顧客為中心創造價值”

傳統的營銷和戰略的觀點認為,大規模生產意味著標准化生產方式,無個性化可言。定製化生產意味著個性化生產,但是只是小規模定製。說到底,大規模生產與定製化無法結合。但是在今天,大數據分析的營銷和銷售解決的是大規模生產和顧客個性化需求之間的矛盾。使大企業擁有傳統小便利店的一對一顧客關系管理,以即時工具和個性化推薦使得大企業實現與顧客的實時溝通等。

三、基於數據營銷案例研究――京東

京東是最大的自營式電商企業。其中的京東商城,涵蓋服裝、化妝品、日用品、生鮮、電腦數碼等多個品類。在整個手機零售商行業里,京東無論是在銷售額還是銷售量都佔到市場份額一半的規模。之所以占據這樣的優勢地位,得益於大數據的應用,即京東的JD Phone的計劃。

JD Phone計劃是依據京東的大數據和綜合服務的能力,以用戶為中心整合產業鏈的優質資源並聯合廠商打造用戶期待的產品和服務體驗。京東在銷售的過程中,通過對大數據的分析,內部研究出一種稱為產品畫像的模型。這個模型通過綜合在京東網站購物消費者的信息,例如:年齡、性別、喜好等類別的信息,然後進行深入分析。根據分析結果結合不同的消費者便有諸如線上的程序化購買、精準的點擊等營銷手段,有效的幫助京東實現精準的營銷推送。不僅如此,通過對於後續用戶購物完成的售後數據分析,精確的分析商品的不足之處或者消費者的直接需求。數據3.0時代的一個特徵便是企業不在單純的在企業內部分析數據,而是共享實現價值共創。所以,京東把這些數據用於與上游供應商進行定期的交流,間接促進生產廠商與消費者溝通,了解市場的需求,指導下一次產品的市場定位。總的來說,這個計劃是通過京東銷售和售後環節的大數據分析,一方面指導自身精準營銷,另一方面,影響供應商產品定位和企業規劃,最終為消費者提供滿足他們需求的個性化產品。

四、大數據營銷的策略分析

(一)數據分析要樹立以人為本的思維

“以人為本”體現在兩個方面,一方面是數據分析以客戶為本,切實分析客戶的需求,用數據分析指導下一次的產品設計、生產和市場營銷。另一方面,以人為本體現在對用戶數據的保密性和合理化應用。切實維護好大數據和互聯網背景下隱私保護的問題,使得信息技術良性發展。

(二)正確處理海量數據與核心數據的矛盾

大數據具有數據量大、類型繁多、價值密度低和速度快時效高的特點。所以在眾多海量的數據中,只有反映消費者行為和市場需求的信息才是企業所需要的。不必要的數據分析只會影響企業做出正確的決策。鑒於此,首先企業需要明確核心數據的標准;其次企業要及時進行核心數據的歸檔;最後要有專業的數據分析專業隊數據進行分析,得出科學合理的結果以指導實踐。

(三)整合價值鏈以共享數據的方式實現價值創造

7. 從大數據中分析營銷思路

從大數據中分析營銷思路

2013年大數據成為人們津津樂道的事,但是這個概念對於許多人來說是模糊的概念。對於企業來說,分析大數據主要是為了從中找到營銷的思路。之前在我們不二碼垛機網站,對數據的研究一直是時有時無的事,總的來說就是不夠重視。之後在意識到,大數據對營銷工作的重要性,才加大對數據的分析。如何從大數據中分析營銷工作,請聽我慢慢道來。

對營銷工作的數據分析是最能體現營銷工作效果的反饋,所以需要對各項數據反映的問題進行深入的了解。在對不二碼垛機的營銷工作的數據分析,我主要是從以下幾點分析的。在我看來,對這樣的數據分析也是真正的從用戶體驗的角度分析營銷,這樣的思路正好符合營銷注重用戶體驗度的思路。

1、分析用戶的行為特徵

對用戶這塊的數據分析是最直接體現我們不二碼垛機的用戶群的,從這些用戶的數據,我們能把握用戶的年齡段、用戶的喜好與購買習慣等等大量的用戶數據。在更加深入的分析這些數據,甚至可以做到比用戶更加了解用戶。

2、分析營銷活動的效果

在不二碼垛機器人生產之前先了解潛在用戶的主要特徵,分析他們對產品的期待,這樣生產出來的不二碼垛機器人http://www.fujiyusoki.com.hk/能投其所好,這樣的產品是符合用戶需要的。例如湖南衛視在拍《爸爸去哪兒》之前,一定有一大堆的數據分析,包括對市場的分析,這樣拍攝的節目才是符合用戶喜好的東西。

3、分析競爭對手的數據

這方面的數據相信是企業想知道的,雖然對方不可能將數據告訴我們,但是我們可以通過大數據監測分析得到相關數據。對競爭對手的數據分析是快速提高我們營銷效果的好方法。但是要注意競爭中手段的利用,不能超越法律。競爭對手的數據監控要合理分析,揚長避短學習優秀的地方。

4、品牌危機監測及管理支持

新媒體時代,許多企業都進軍媒體中,希望利用媒體宣傳自己的產品。我們不二碼垛機面對品牌危機,也一直在找對策。我們營銷總監說過一句話,「現在許多企業都在玩弄媒體,誰的媒體資源多,對品牌的宣傳就成功了一半。」所以我們不二碼垛機也在加大媒體這塊的投入。大數據的分析可以讓企業提前有所洞悉。在危機爆發過程中,最需要的是跟蹤危機傳播趨勢,識別重要參與人員,方便快速應對。大數據可以採集負面定義內容,及時啟動危機跟蹤和報警。

5、市場預測與決策分析支持

對市場預測與決策的數據分析,有利於我們對市場的把控。現在的數據分析與數據挖掘要求較之前高許多,也更加全面、速度更加及時的大數據分析,多市場的預測及決策分析提供更好的支持。在我們不二碼垛機對市場的預測分析度我們的決策有非常大的幫助。

今後,誰在大數據分析能力上更強,對數據把控力更大,在市場競爭力上會有更大的優勢。

以上是小編為大家分享的關於從大數據中分析營銷思路的相關內容,更多信息可以關注環球青藤分享更多干貨

閱讀全文

與大數據營銷案分析報告相關的資料

熱點內容
培訓學校砍價活動方案 瀏覽:149
飯店品牌營銷價值 瀏覽:873
什麼是微信公眾號營銷 瀏覽:863
營銷中心開放微信 瀏覽:152
網路營銷有哪些啟示 瀏覽:437
清明節微信營銷活動 瀏覽:880
電子商務基礎總結 瀏覽:384
市場營銷知識第九章測試卷答案 瀏覽:573
市場營銷活動策劃書的大綱 瀏覽:446
旅遊市場營銷控制與管理 瀏覽:597
市場營銷海報背景素材 瀏覽:33
短期就業培訓方案 瀏覽:477
市場營銷的調查問卷怎麼寫 瀏覽:816
電子商務的主要環節 瀏覽:324
考研上財市場營銷難度 瀏覽:405
綠豆糕促銷活動廣告牌 瀏覽:70
市場營銷競爭分析報告 瀏覽:490
金融產品市場營銷策略 瀏覽:447
新技術對市場營銷有什麼重要影響 瀏覽:757
會展場館市場營銷 瀏覽:432