導航:首頁 > 營銷策劃 > 大數據時代的市場調查

大數據時代的市場調查

發布時間:2023-07-20 05:54:51

㈠ 大數據時代給市場調查帶來了哪些機會和威脅

大數據時代做市場調查最重要的是能採集到一手的海量數據,還必須非常精準的數據,高質量的數據,八爪魚採集器可以幫你做採集。
然後就是大數據分析,這個一般要數學建模。

㈡ 大數據對市場調研有甚麼作用

在以往的市場調研工作中,數據統計分析能夠幫助我們發掘出數據中隱藏
因此,科學技術的進步與發展對大數據的支持起側重要的作用,大數據的

㈢ 大數據分析時代對市場營銷的影響研究

下面我為你准備的關於市場營銷的論文,歡迎閱讀借鑒,希望對大家有幫助。

一、數據分析時代演變歷程

(一)數據1.0時代

數據分析出現在新的計算技術實現以後,分析1.0時代又稱為商業智能時代。它通過客觀分析和深入理解商業現象,取締在決策中僅憑直覺和過時的市場調研報告,幫助管理者理性化和最大化依據事實作出決策。首次在計算機的幫助下將生產、客戶交互、市場等數據錄入資料庫並且整合分析。但是由於發展的局限性對數據的使用更多的是准備數據,很少時間用在分析數據上。

(二)數據2.0時代

2.0時代開始於2005年,與分析1.0要求的公司能力不同,新時達要求數量分析師具備超強的分析數據能力,數據也不是只來源於公司內部,更多的來自公司外部、互聯網、感測器和各種公開發布的數據。比如領英公司,充分運用數據分析搶佔先機,開發出令人印象深刻的數據服務。

(三)數據3.0時代

又稱為富化數據的產品時代。分析3.0時代來臨的標準是各行業大公司紛紛介入。公司可以很好的分析數據,指導合適的商業決策。但是必須承認,隨著數據的越來越大,更新速度越來越快,在帶來發展機遇的同時,也帶來諸多挑戰。如何商業化地利用這次變革是亟待面對的課題。

二、大數據營銷的本質

隨著顧客主導邏輯時代的到來以及互聯網電商等多渠道購物方式的出現,顧客角色和需求發生了轉變,世界正在被感知化、互聯化和智能化。大數據時代的到來,個人的行為不僅能夠被量化搜集、預測,而且顧客的個人觀點很可能改變商業世界和社會的運行。由此,一個個性化顧客主導商業需求的時代已然到來,大數據沖擊下,市場營銷引領的企業變革初見端倪。

(一)大數據時代消費者成為市場營銷的主宰者

傳統的市場營銷過程是通過市場調研,採集目前市場的信息幫助企業研發、生產、營銷和推廣。但是在大數據以及社會化媒體盛行的今天,這種營銷模式便黯然失色。今天的消費者已然成為了市場營銷的主宰者,他們會主動搜尋商品信息,貨比三家,嚴格篩選。他們由之前的注重使用價值到更加註重消費整個過程中的體驗價值和情境價值。甚至企業品牌形象的塑造也不再是企業單一宣傳,虛擬社區以及購物網站等的口碑開始影響消費者的購買行為。更有甚者,消費者通過在社交媒體等渠道表達個人的需求已經成為影響企業產品設計、研發、生產和銷售的重要因素。

(二)大數據時代企業精準營銷成為可能

在大數據時代下,技術的發展大大超過了企業的想像。搜集非結構化的信息已經成為一種可能,大數據不單單僅能了解細分市場的可能,更通過真正個性化洞察精確到每個顧客。通過數據的挖掘和深入分析,企業可以掌握有價值的信息幫助企業發現顧客思維模式、消費行為模式。尤其在今天顧客為了彰顯個性,有著獨特的消費傾向。相對於忠誠於某個品牌,顧客更忠誠與給自己的定位。如果企業的品牌不能最大化地實現客戶價值,那麼即使是再惠顧也難以保證顧客的持續性。並且,企業不能奢望對顧客進行歸類,因為每個顧客的需求都有差別。正是如此,大數據分析才能更好地把握顧客的消費行為和偏好,為企業精準營銷出謀劃策。

(三)大數據時代企業營銷理念――“充分以顧客為中心創造價值”

傳統的營銷和戰略的觀點認為,大規模生產意味著標准化生產方式,無個性化可言。定製化生產意味著個性化生產,但是只是小規模定製。說到底,大規模生產與定製化無法結合。但是在今天,大數據分析的營銷和銷售解決的是大規模生產和顧客個性化需求之間的矛盾。使大企業擁有傳統小便利店的一對一顧客關系管理,以即時工具和個性化推薦使得大企業實現與顧客的實時溝通等。

三、基於數據營銷案例研究――京東

京東是最大的自營式電商企業。其中的京東商城,涵蓋服裝、化妝品、日用品、生鮮、電腦數碼等多個品類。在整個手機零售商行業里,京東無論是在銷售額還是銷售量都佔到市場份額一半的規模。之所以占據這樣的優勢地位,得益於大數據的應用,即京東的JD Phone的計劃。

JD Phone計劃是依據京東的大數據和綜合服務的能力,以用戶為中心整合產業鏈的優質資源並聯合廠商打造用戶期待的產品和服務體驗。京東在銷售的過程中,通過對大數據的分析,內部研究出一種稱為產品畫像的模型。這個模型通過綜合在京東網站購物消費者的信息,例如:年齡、性別、喜好等類別的信息,然後進行深入分析。根據分析結果結合不同的消費者便有諸如線上的程序化購買、精準的點擊等營銷手段,有效的幫助京東實現精準的營銷推送。不僅如此,通過對於後續用戶購物完成的售後數據分析,精確的分析商品的不足之處或者消費者的直接需求。數據3.0時代的一個特徵便是企業不在單純的在企業內部分析數據,而是共享實現價值共創。所以,京東把這些數據用於與上游供應商進行定期的交流,間接促進生產廠商與消費者溝通,了解市場的需求,指導下一次產品的市場定位。總的來說,這個計劃是通過京東銷售和售後環節的大數據分析,一方面指導自身精準營銷,另一方面,影響供應商產品定位和企業規劃,最終為消費者提供滿足他們需求的個性化產品。

四、大數據營銷的策略分析

(一)數據分析要樹立以人為本的思維

“以人為本”體現在兩個方面,一方面是數據分析以客戶為本,切實分析客戶的需求,用數據分析指導下一次的產品設計、生產和市場營銷。另一方面,以人為本體現在對用戶數據的保密性和合理化應用。切實維護好大數據和互聯網背景下隱私保護的問題,使得信息技術良性發展。

(二)正確處理海量數據與核心數據的矛盾

大數據具有數據量大、類型繁多、價值密度低和速度快時效高的特點。所以在眾多海量的數據中,只有反映消費者行為和市場需求的信息才是企業所需要的。不必要的數據分析只會影響企業做出正確的決策。鑒於此,首先企業需要明確核心數據的標准;其次企業要及時進行核心數據的歸檔;最後要有專業的數據分析專業隊數據進行分析,得出科學合理的結果以指導實踐。

(三)整合價值鏈以共享數據的方式實現價值創造

㈣ 大數據時代如何做市場調查

不管什麼時候,做市場調查的方法是不會有本質區別的。無非可能再一些調查方式和調查手段、及收集數據的方式上存在一些差異

㈤ 如何利用大數據思維來進行用戶調研

如何利用大數據思維來進行用戶調研

傳統的產品調研,通常需要先行選定用戶樣本,之後耗費大量人力物力採用不同的調研方法,進行用戶調研。如果把大數據應用到用戶調研當中,憑借著海量的歷史數據樣本,對於調研問題,可以藉助大數據進行預分析處理,之後再進行人工選擇性介入處理,不僅可以提高用戶調研的效率,以最快的速度響應用戶需求,而且可以極大的降低用戶調研的成本。基於此,本文試圖利用大數據思維,來解讀大數據時代下用戶調研的新變化。

說明:本文提供的僅僅是大數據時代下,用戶調研的思路。如果有具體的用戶調研需求,歡迎向筆者提出,筆者將在下篇推文中,進行具體案例的探討。

大數據作為一種生產資料,正在越來越深入的影響著人類社會。現在,大數據在電商領域,通過根據相似消費者的商品偏好,向顧客推薦更符合其個人喜好的商品,這一推薦方式不僅僅省去了消費者尋找商品的時間,更是提高了電商平台的收入。

同理,在音樂、電視劇、電影,廣告投放、用戶調研等領域,大數據的可用武之地也越來越廣。那麼,大數據時代給用戶調研方式帶來了哪些改變呢?

大數據被廣泛應用以前,傳統的用戶調研方式,通常需要經過界定調研問題、制定調研計劃、綜合調研方法、設計調研問卷、總結調研結果這5個步驟。

但是,大數據被廣泛應用以後,憑借著海量的歷史數據樣本,對於調研問題,可以藉助多種公開的大數據工具進行預分析處理,之後再進行人工選擇性介入處理,將二者進行比對,進行多輪TEST,幫助產品人員發現問題的真相。

一、設置出優秀的調研問題,調研便成功了一半

設置調研問題,處於整個調研的第一個環節,其重要性自然不言而喻。比如某些產品經理可能會提出「用戶為什麼不接受視頻付費」,或者「是否有足夠的用戶願意支付15元/月來觀看正版高清視頻,如果是更低或者更高的價格呢?」前一個調研問題過於寬泛,而後一個調研問題卻又界定的過於單一。

如果將調研問題界定為:

哪一類用戶最有可能使用視頻網站的付費服務?視頻網站不同檔位的價格,分別會有多少用戶願意支付?所有視頻網站中,會有多少用戶會因為這項服務而選擇該視頻網站?相對於視頻付費,如廣告主贊助,這一方式的價值何在?

當然,並非所有調研的調研內容都能如此具體明了:

有些屬於探索性研究,這類調研的目的在於找出問題的真相,提出可能的答案,或新的創意;

有些屬於描述性研究,這類調研重在描述項目內容的某些數量特徵;

還有一些是因果性研究,這種調研的目的是檢測現象之間是否存在因果關系。

二、根據調研問題,進行大數據預分析處理

大數據的魅力在於採集的不是樣本數據,而是全部數據。例如滴滴推出滴滴外賣服務、美團推出美團打車業務,得益於現代社交網路的發達程度,滴滴和美團幾乎可以對微博、微信等社交媒體上的對於新推出服務的議論進行統計分析,從而提供更好的服務。

例如,可以通過網路指數了解網友對於此項服務的搜索行為,同時進行跟蹤分析:

當然並不是所有的網友都會使用網路搜索,他們也有可能使用360搜索,這時就要藉助360指數:

又或者用戶採取其他方式來表達情緒和想法,比如社交媒體微博、微信,可能就會用到微博指數,第三方輿情監測和口碑分析工具,藉助新浪微輿情進行口碑分析和文本挖掘:

說明:以上的大數據工具,僅列舉了常用的3種。在實際操作中,大數據工具的選擇,還需要根據用戶具體的調研問題來確定。

三、人工介入,對調研問題進行針對性處理

可以根據大數據分析結果,人工介入到調研問題上來,進行有針對性的調研處理,這時候可以採用傳統的調研方法。但是與以往不同的是,在採用這些調研方法時,不需再耗費大量成本進行種種調研。選擇人工介入的目的,是為了更真實的感受調研過程,參與調研問題的處理上來。

傳統的調研方法,通常有以下4種方式:

1.觀察法

這種方法是採取不引人注目的方式,來觀察消費者使用產品的情形,以收集最新數據資料。某些戰略咨詢公司在做調研時,十分信奉觀察法。

下面是國內知名的營銷咨詢公司,華與華在《超級符號就是超級創意》里關於這一方法運用的片段,了解一下:

「比如你在超市裡觀察牙膏的消費,觀察走到牙膏貨架前的人,你會看到這樣的一個過程:一個顧客推著購物車走過來,一邊走一邊瀏覽貨架上的牙膏;停下來,注目於一盒牙膏片刻,繼續往前走;停下來,拿起一盒牙膏,看後放下;又拿起一盒看看,再翻過來,仔細看包裝,背後的文案放回貨架;往前走兩步,掉頭回到最開始注目的那盒牙膏,仔細看看,包裝背後的文案,放回貨架;快步走回,第四步看的那盒牙膏仍進購物車里,選擇結束。」

「不,沒結束,他可能過一會兒會折回來,把剛才放進購物車里的牙膏放回貨架,換成第二步注目的那盒,也可能兩盒都要。這樣你就觀察到他買牙膏的整個過程,竟然有七個動作。」

2.焦點小組訪談法

這是一種基於人口統計特徵、心理統計特徵和其他因素的考慮,仔細的招募六到十個人,然後將他們召集在一起,在規定時間內與這些參與者進行討論的一種調研方式,參與者通常可以得到一些報酬。

調研人員通常坐在座談是隔壁的,裝有單面鏡的房間內,對座談會的討論過程進行觀察。必須要注意的是:實時焦點小組訪談時,必須讓參與者盡可能的感受到氣氛輕松,力求讓他們說真話。

3.行為資料分析法

用戶在使用產品時所產生的種種行為都可以用來觀察用戶的心理,調研人員通過分析這些數據,可以了解用戶的許多情況。

用戶的瀏覽時長和瀏覽內容可以反映用戶的實際偏好,它比用戶口頭提供給調研人員的一些陳述更為可靠。

4.實驗法

通過排除所有可能影響觀測結果的因素,來獲得現象間真正的因果關系。

比如視頻網站,向用戶提供高清視頻服務,第一季度只收費25元每月,第二季度收費15元每月。如果兩次不同價格的收費,使用該服務的用戶沒有差異,那麼視頻網站就得不出如下結論:較高的服務費用會顯著影響用戶觀看收費視頻的意願。

四、調研方法確定以後,就可以著手調研問卷的設計了

設置調查問卷,是為了收集一手資料。不過,由於問卷中問句的格式、次序和問句的順序都影響問卷的填答效果,所以對問卷中的問句進行測試和調整是非常必要的。

問卷設計的注意事項:

五、總結調研結果

將大數據統計預分析得到的結果,同產品調研人員實際調研得出的結果,進行比對,從而將數據和信息轉換成發現和建議。

最後,大功告成,根據市場調研所得的結果,就可以制定具體的營銷決策。

說明:由於在這個過程中,運用傳統調研方式,無需耗費大量人力物力,對於可疑結果,可以通過控制變數的方式,進行多輪TEST,幫助產品人員真正發現調研問題的真相。

㈥ 如何通過大數據分析做市場調研

大數據時代新的市場研究方法使「無干擾」真實還原消費過程成為可能,智能化的信息處理技術使低成本、大樣本的定量調研成為現實,這將推動消費行為及消費心理研究達到一個新的高度,幫助快速消費品企業更為精準地捕捉商機。大數據時代的市場研究方法主要體現在以下四個方面。
1.基於互聯網進行市場調研提高了效率,降低了成本
網路調研具有傳統調研方法無可比擬的便捷性和經濟性。快速消費品企業在其門戶網站建立市場調研板塊,再將新產品郵寄給消費者,消費者試用後只要在網站上點擊即可輕松完成問卷填寫,其便利性大大降低了市場調研的人力和物力投入,也使得消費者更樂於參與市場調研。同時,網路調研的互動性使得企業在新產品尚處於概念階段即可利用3D擬真技術進行產品測試,通過與消費者互動,讓消費者直接參與產品研發,從而更好地滿足市場需求。
2. 挖掘網路社交平台信息成為研究消費態度及心理的新手段
QQ、微博、微信等社交平台已日漸成為新生代消費群體不可或缺的社交工具,快速消費品的消費者往往有著極高的從眾性,因此針對社交平台的信息挖掘成為研究消費潮流趨勢的新手段。例如,通過微博評論可以統計分析消費者對某種功能型產品的興趣及偏好,這對研究消費態度及心理有非常大的幫助。更重要的是,這類信息屬於消費者主動披露,與訪談形式的被動挖掘相比信息的真實性更高。
3. 移動終端提供了實時、動態的消費者信息
隨著3G網路及智能手機普及,市場研究已滲透到移動終端領域。大量的手機APP應用(例如二維碼掃描等)為實時採集消費信息提供了可能性,移動終端的信息分析在購買時點、產品滲透率及回購率、獎勵促銷效果評估等方面將發揮不可估量的作用。
4. 零售終端信息採集系統幫助企業了解市場
目前,PC-POS系統在零售終端得到了廣泛的應用,只要掃描產品條形碼,消費者購買的產品名稱、規格、購進價、零售價、購買地點等信息就可以輕松採集。通過構建完整的零售終端信息採集系統,快速消費品企業可以掌握商業渠道的動態信息,適時調整營銷策略
環顧四周,在每個行業中,大數據的增長正在改變我們收集、存儲、分析和應用數據的方式。正如很多公司目前正在收集整理的那樣,大家面臨的共同問題是智能化信息採集、儲存及分析。
l 超大容量的數據倉庫。數據倉庫具有容量大、主題明確、高度集成、相對穩定、反映歷史變化等特點,可以有效地支撐快速消費品企業進行大數據分析與應用。數據倉庫可以更有效地挖掘數據資源,並可以按照日、周、月、季、年等周期提供分析報表,有助於營銷人員更有效地制定營銷戰略。
l 專業、高效的搜索引擎。旅遊搜索、博客搜索、購物搜索、在線黃頁搜索等專業搜索引擎已經得到了廣泛應用,快速消費品企業可以根據自己的特點構建專業化的搜索引擎,對相關的企業信息、產品信息、消費者評價信息、商業服務信息等數據進行智能化檢索、分類及搜集,形成高度專業化、綜合性的商業搜索引擎。
l 基於雲計算的數學分析模型。市場研究的關鍵是洞察消費者需求,基於雲計算的數學分析模型可以將碎片化信息還原為完整的消費過程信息鏈條,更好地幫助營銷人員研究消費行為及消費心理。這些碎片化的信息包括消費者在不同時間、不同地點、不同網路應用上發布的消費價值觀信息、購買信息、產品評論信息等。基於雲計算的智能化分析,一方面可以幫助市場研究人員對消費行為及消費心理進行綜合分析,另一方雲計算成本低、效率高的特點非常適合快速消費品企業數據量龐大的特性。
傳統的市場研究包括定性研究及定量研究,以座談會為主的定性研究受制於主持人的訪談技巧,以街頭攔截訪問為主的定量研究雖然以嚴謹的抽樣理論為基礎,但同樣不能完全代表總體的客觀情況。而大數據時代革命性的調研方法為市場研究人員提供了以「隱形人」身份觀察消費者的可能性,超大樣本量的統計分析使得研究成果更接近市場的真實狀態。
與此同時,大數據時代的新方法、新手段也帶來新的問題,一是如何智能化檢索及分析文本、圖形、視頻等非量化數據,二是如何防止過度採集信息,充分保護消費者隱私。雖然目前仍然有一定的技術障礙,但不可否認的是大數據市場研究有著無限廣闊的應用前景。

閱讀全文

與大數據時代的市場調查相關的資料

熱點內容
網路營銷的大學有哪些特點 瀏覽:323
微信營銷廣告有哪些 瀏覽:924
農牧民科技培訓工作方案 瀏覽:469
上海寶尊電子商務有限公司英文 瀏覽:153
電商培訓計劃與實施方案 瀏覽:396
人力資源專業與市場營銷專業怎麼樣 瀏覽:70
重慶廣告促銷方案 瀏覽:547
飯店春節促銷活動策劃方案 瀏覽:938
網路營銷的方式和特點是什麼 瀏覽:334
少兒培訓機構活動方案 瀏覽:316
實訓一網路營銷市場分析 瀏覽:26
教師期末工作結束培訓方案 瀏覽:721
教學培訓應急方案 瀏覽:3
雙十二機構活動策劃方案 瀏覽:277
廣州1601電子商務時尚島 瀏覽:354
烏魯木齊天山區金中電子商務 瀏覽:657
教育培訓開業策劃活動方案 瀏覽:268
母乳喂養培訓方案範文 瀏覽:267
電子商務的深遠意義 瀏覽:521
網路營銷面試的問題 瀏覽:788