導航:首頁 > 電商促銷 > 電子商務數據分析指標體系

電子商務數據分析指標體系

發布時間:2023-07-16 03:04:14

1. 電商數據分析需要統計哪些指標

數據指標
1.電商總體運營指標
數據指標
電商總體運營整體指標主要面向的人群電商運營的高層,通過總體運營指標評估電商運營的整體效果。電商總體運營整體指標包括四方面的指標:
(1)流量類指標
獨立訪客數(UV),指訪問電商網站的不重復用戶數。對於PC網站,統計系統會在每個訪問網站的用戶瀏覽器上「種」一個cookie來標記這個用戶,這樣每當被標記cookie的用戶訪問網站時,統計系統都會識別到此用戶。在一定統計周期內如(一天)統計系統會利用消重技術,對同一cookie在一天內多次訪問網站的用戶僅記錄為一個用戶。而在移動終端區分獨立用戶的方式則是按獨立設備計算獨立用戶。
頁面訪問數(PV),即頁面瀏覽量,用戶每一次對電商網站或著移動電商應用中的每個網頁訪問均被記錄一次,用戶對同一頁面的多次訪問,訪問量累計。
人均頁面訪問數,即頁面訪問數(PV)/獨立訪客數,該指標反映的是網站訪問粘性。
(2)訂單產生效率指標
總訂單數量,即訪客完成網上下單的訂單數之和。
訪問到下單的轉化率,即電商網站下單的次數與訪問該網站的次數之比。
(3)總體銷售業績指標
網站成交額(GMV),電商成交金額,即只要網民下單,生成訂單號,便可以計算在GMV裡面。
銷售金額。銷售金額是貨品出售的金額總額。
註:無論這個訂單最終是否成交,有些訂單下單未付款或取消,都算GMV,銷售金額一般只指實際成交金額,所以,GMV的數字一般比銷售金額大。
客單價,即訂單金額與訂單數量的比值。
(4)整體指標
銷售毛利,是銷售收入與成本的差值。銷售毛利中只扣除了商品原始成本,不扣除沒有計入成本的期間費用(管理費用、財務費用、營業費用)。
毛利率,是衡量電商企業盈利能力的指標,是銷售毛利與銷售收入的比值。如京東的2014年毛利率連續四個季度穩步上升,從第一季度的10.0%上升至第四季度的12.7%,體現出京東盈利能力的提升。
2.網站流量指標
數據指標
(1)流量規模類指標
常用的流量規模類指標包括獨立訪客數和頁面訪問數,相應的指標定義在前文(電商總體運營指標)已經描述,在此不在贅述。
(2)流量成本累指標
單位訪客獲取成本。該指標指在流量推廣中,廣告活動產生的投放費用與廣告活動帶來的獨立訪客數的比值。單位訪客成本最好與平均每個訪客帶來的收入以及這些訪客帶來的轉化率進行關聯分析。若單位訪客成本上升,但訪客轉化率和單位訪客收入不變或下降,則很可能流量推廣出現問題,尤其要關注渠道推廣的作弊問題。
(3)流量質量類指標
跳出率(Bounce Rate)也被稱為蹦失率,為瀏覽單頁即退出的次數/該頁訪問次數,跳出率只能衡量該頁做為著陸頁面(LandingPage)的訪問。如果花錢做推廣,著落頁的跳出率高,很可能是因為推廣渠道選擇出現失誤,推廣渠道目標人群和和被推廣網站到目標人群不夠匹配,導致大部分訪客來了訪問一次就離開。
頁面訪問時長。頁訪問時長是指單個頁面被訪問的時間。並不是頁面訪問時長越長越好,要視情況而定。對於電商網站,頁面訪問時間要結合轉化率來看,如果頁面訪問時間長,但轉化率低,則頁面體驗出現問題的可能性很大。
人均頁面瀏覽量。人均頁面瀏覽量是指在統計周期內,平均每個訪客所瀏覽的頁面量。人均頁面瀏覽量反應的是網站的粘性。
(4)會員類指標
注冊會員數。指一定統計周期內的注冊會員數量。
活躍會員數。活躍會員數,指在一定時期內有消費或登錄行為的會員總數。
活躍會員率。即活躍會員占注冊會員總數的比重。
會員復購率。指在統計周期內產生二次及二次以上購買的會員占購買會員的總數。
會員平均購買次數。指在統計周期內每個會員平均購買的次數,即訂單總數/購買用戶總數。會員復購率高的電商網站平均購買次數也高。
會員回購率。指上一期末活躍會員在下一期時間內有購買行為的會員比率。
會員留存率。會員在某段時間內開始訪問你的網站,經過一段時間後,仍然會繼續訪問你的網站就被認作是留存,這部分會員占當時新增會員的比例就是新會員留存率,這種留存的計算方法是按照活躍來計算,另外一種計算留存的方法是按消費來計算,即某段的新增消費用戶在往後一段時間時間周期(時間周期可以是日、周、月、季度和半年度)還繼續消費的會員比率。留存率一般看新會員留存率,當然也可以看活躍會員留存。留存率反應的是電商留住會員的能力。

2. 總結在跨境電商平台運營中,最關鍵的數據指標,並進行解釋

電子商務中使用分析數據的優點:
數據分析體系建立之後,其數據指標並不是一成不變的,需要根據業務需求的變化實時的調整,調整時需要注意的是統計周期變動以及關鍵指標的變動。
一般來說,單個數據索引的分析並不能解決這個問題,而且每個索引都是相互關聯的。將所有索引編織成一個網路,並根據具體需要找到每個數據索引節點。當用戶在電子商務網站上有購買行為時,他們會從潛在客戶轉變為網站的價值客戶。

電子商務網站一般將用戶的交易信息,包括購買時間、購買商品、購買數量、支付金額等信息存儲在自己的資料庫中,因此,這些客戶可以根據網站的運營數據來分析自己的交易行為,估計每個客戶的價值以及為每個客戶拓展營銷的可能性。
電子商務平台需要分析的數據及分析規則如下:

一、網站運營指標:
網站運營指標主要用於衡量網站的整體運營情況。在這里,EC數據分析聯盟暫時將網站運營指標分為網站流量指標、商品類別指標和供應鏈指標。網站流量指標主要用於考慮網站優化、網站可用性、網站流量質量和客戶購買行為。
商品類別指標主要用於衡量網站商品的正常運營水平,與銷售指標和供應鏈指標密切相關。這里的供應鏈指標主要是指電子商務網站的商品庫存和商品配送,而不考慮商品的生產和原材料的庫存和運輸。
二、商業環境指標:
這里,電子商務網站經營環境指標分為外部競爭環境指標和內部購物環境指標。外部競爭環境指標主要包括市場佔有率、市場拓展率、網站排名等,這些指標通常使用第三方研究公司的報告數據。與獨立的B2C網站相比,淘寶在這方面的數據要准確得多。
網站內部購物環境指標包括功能指標和運營指標(這部分與之前的流量指標一致)。常見的功能指標包括商品種類的多樣性、支付配送方式、網站正常運行、連接速度等。
三、銷售業績指標:
銷售業績指標與公司的財務收入直接掛鉤,在所有數據分析指標體系中起著主導作用。其他數據指標可根據該指標進行細分。
網站銷售績效指標主要關注網站訂單的轉化率,而訂單銷售指標主要關注具體毛利率、訂單效率、重復采購率、退貨率和匯率。當然,還有很多指標,如總銷售額、品牌類別銷售額、總訂單、有效訂單等,這里沒有列出。

3. 電商數據分析指標都有哪些該如何進行分析

此文是對最近學習的電商相關知識點做一個鞏固

傳統零售利用二八法則生存,電商靠長尾理論積累銷售。
傳統零售是小數據,電商是大數據。
傳統零售是「物流」,零售過程就是商品的流動;電商是「信息流」,顧客通過搜索、比較、評論、分享產生信息,達到購買的目的。
傳統零售注重體驗感,電商注重服務和效率。
傳統零售是做加法,電商是做乘法。傳統零售是通過一家家店擴大影響力,電商通過資金的投入迅速搶占市場。
傳統零售的主要成本是房租和人工成本,電商的主要成本是物流和營銷成本。
總結:電商和傳統零售雖有千萬種差別,但總歸都是零售,融合是二者註定的趨勢,即現在火熱的新零售。

傳統零售的數據主要是進銷存數據、顧客數據和消費數據。電商的數據卻復雜得多,數據來源渠道也很多樣化

電商數據來源廣泛,常規的流量數據、交易數據、會員數據在品牌的交易平台都有提供。一些第三方網站也提供數據源及分析功能。

1、網路統計:包括流量相關的網站統計、推廣統計、移動統計三部分內容。分析內容包括趨勢分析、來源分析、頁面分析、訪客分析、定製分析和優化分析。
2、谷歌分析:包括流量分析工具、內容分析、社交分析、移動分析、轉化分析、廣告分析幾部分內容。
3、Crazy egg熱力圖:主要特色是對頁面熱點追蹤分析的熱力圖。
4、CNZZ數據專家(友盟):包括站長統計、全景統計、手機客戶端、雲推薦、廣告管家、廣告效果分析和數據中心等。
還有一些無需埋點監測數據的產品,如GrowingIO、神策數據、諸葛io等。

以下為用思維導圖進行梳理的電商數據分析指標,總共包括六大類

對訪問你網站的訪客進行分析,基於這些數據指標可以網頁進行改進

這里需要注意兩個點

1)影響因素不同:UV 價值更受流量質量的影響;而客單價更受賣的貨的影響;

2)使用場景不同:UV 價值可以用來評估頁面 / 模塊的創造價值的潛力;客單價可以用來比較品類和商品特徵,但一個頁面客單價高,並不代表它創造價值的能力強,只能得出這個頁面的品類更趨近於是賣高價格品類的。

如果網站是為了幫助客戶盡快完成他們的任務(比如:購買,答疑解惑),那麼在線時長應當是越短越好;如果希望客戶一同參與到網站的互動中來,那麼時間越久會越好。所以,分析在線時長是否越長越好,要根據產品定位來具體分析

從注冊到成交整個過程的數據,幫助提升商品轉化率。

對於一個新電商來說,積累數據,找准營運方向比賣多少貨,賺多少錢更重要。這個階段主要 關注流量指標 ,指標如下:

對於已經經營一段時間的電商,通過數據分析 提高店鋪銷量 就是首要任務。此階段的重點指標是 流量和銷售指標 ,指標如下:

對於已經有規模的電商,利用數據分析 提升整體營運水平 就很關鍵。重點指標如下:

數據指標分為追蹤指標、分析指標和營運指標,營運指標就是績效考核指標。一個團隊的銷售額首先是追蹤出來的,其次是分析出來的,最後才是績效考核出來的。銷售追蹤自然是按天、按時段說話,分析一般是以周和月為單位,績效考核常常是以月為主、以年為輔。

執行人員側重過程指標,管理層側重結果指標。對於數據分分析人員來說要學會根據職位提供不同的數據。

1、無流量不電商,對於流量分析,我們常用漏斗圖來做分析,幾乎每個流量的細分都可以用到漏斗圖。
2、漏斗圖就是一個細分和溯源的過程,通過不同的層次分解從而找到轉化的邏輯。
3、漏斗圖的弱點,就是反應一條轉化路徑的形態,我們可以稍加修改實現漏斗圖的對比功能。

1、流量的質量分為質和量兩方面,只有質沒有量的流量是沒有多少實際價值的,流量的質體現在不同的營銷目的上,例如獲得點擊、注冊、收藏、購買或者獲取利潤的目的。
2、可以通過四象限分析圖來對比分析流量的質量。下圖是針對購買的轉化率和流量的四象限圖,其中第一象限的流量應該是高質量的,流量和轉化率均高於平均值;第二象限渠道的流量轉化率高,但量不大,通過搜索來的流量大部分屬於此類;第四象限流量屬於質低量高,站外購買的流量這種情況比較多;第三象限屬於質低量低的雙低流量,不用特別維護,任其發展即可。
3、圖中的Y軸可以根據具體的分析目的替換成點擊率、注冊率、收藏率、ROI(單元產出)等進行對比分析。
四象限分析圖中,X軸、Y軸、分析對象都可以根據不同的目的進行替換。
4、散點圖的四象限分析可以結合趨勢,或者演變成四象限氣泡圖,氣泡圖的大小為ROI,這種四象限圖信息量更大。

1、電商的銷售針對比傳統零售復雜很多,主要復雜在流量的多層次多渠道上,互聯網的好處是幾乎能將用戶的每個動作記錄下來,然後我們從中找到關鍵點進行診斷即可。下圖,是一個類似杜邦分析的圖,從值(圖中紅色)和率(圖中藍色)兩個方面,訂單、新客、老客三個維度將銷售額拆成五個層次,每個層次間具有加或乘的邏輯關系。
2、銷售額是一個結果指標,圖中的20個指標是過程指標,每個指標的變化都會影響最終的銷售額,基本都是正相關。(折扣和銷售額的關聯會稍微復雜一些)
3、通過上圖,使用對比、細分的原則分析可以判斷出哪兒些指標變化對銷售額產生了影響。

參考書籍為《數據化管理——洞悉零售及電子商務運營》

4. 電子商務數據分析的電子商務數據分析的五個指標

電子商務數據分析體系包括網站運營指標、經營環境指標、銷售業績指標、運營活動指標和客戶價值指標五個一級指標。
網站運營指標這里定為一個綜合性的指標,其下麵包括有網站流量指標、商品類目指標以及(虛擬)供應鏈指標等幾個二級指標。經營環境指標細分為外部經營環境指標和內部經營環境指標兩個二級指標。銷售業績指標則根據網站和訂單細分為2個二級指標,而營銷活動指標則包括市場營銷活動指標、廣告投放指標和商務合作指標等三個二級指標。客戶價值指標包括總體客戶指標以及新老客戶指標等三個二級指標。 網站運營指標主要用來衡量網站的整體運營狀況,這里Ec數據分析聯盟暫將網站運營指標下面細分為網站流量指標、商品類目指標、以及供應鏈指標。
1.網站流量指標
網站流量指標主要用從網站優化,網站易用性、網站流量質量以及顧客購買行為等方面進行考慮。流量指標的數據來源通常有兩種,一種是通過網站日誌資料庫處理,另一種則是通過網站頁面插入JS代碼的方法處理(二種收集日誌的數據更有長、短處。大企業都會有日誌數據倉庫,以共分析、建模之用。大多數的企業還是使用GA來進行網站監控與分析。)。網站流量指標可細分為數量指標、質量指標和轉換指標,例如我們常見的PV、UV、Visits、新訪客數、新訪客比率等就屬於流量數量指標,而跳出率、頁面/站點平均在線時長、PV/UV等則屬於流量質量指標,針對具體的目標,涉及的轉換次數和轉換率則屬於流量轉換指標,譬如用戶下單次數、加入購物車次數、成功支付次數以及相對應的轉化率等。
2.商品類目指標
商品類目指標主要是用來衡量網站商品正常運營水平,這一類目指標與銷售指標以及供應鏈指標關聯慎密。譬如商品類目結構佔比,各品類銷售額佔比,各品類銷售SKU集中度以及相應的庫存周轉率等,不同的產品類目佔比又可細分為商品大類目佔比情況以及具體商品不同大小、顏色、型號等各個類別的佔比情況等。
3.供應鏈指標
這里的供應鏈指標主要指電商網站商品庫存以及商品發送方面,而關於商品的生產以及原材料庫存運輸等則不在考慮范疇之內。這里主要考慮從顧客下單到收貨的時長、倉儲成本、倉儲生產時長、配送時長、每單配送成本等。譬如倉儲中的分倉庫壓單佔比、系統報缺率(與前面的商品類目指標有極大的關聯)、實物報缺率、限時上架完成率等,物品發送中的譬如分時段下單出庫率、未送達佔比以及相關退貨比率、COD比率等等。 一個客戶的價值通常由三部分組成:歷史價值(過去的消費)、潛在價值(主要從用戶行為方面考慮,RFM模型為主要衡量依據)、附加值(主要從用戶忠誠度、口碑推廣等方面考慮)。這里客戶價值指標分為總體客戶指標以及新、老客戶價值指標,這些指標主要從客戶的貢獻和獲取成本兩方面來衡量。譬如,這里用訪客人數、訪客獲取成本以及從訪問到下單的轉化率來衡量總體客戶價值指標,而對老顧客價值的衡量除了上述考慮因素外,更多的是以RFM模型為考慮基準。
數據分析體系建立之後,其數據指標並不是一成不變的,需要根據業務需求的變化實時的調整,調整時需要注意的是統計周期變動以及關鍵指標的變動。通常,單獨的分析某個數據指標並不能解決問題,而各個指標間又是相互關聯的,將所有指標織成一張網,根據具體的需求尋找各自的數據指標節點。

5. 跨境電子商務數據分析指標體系有哪些

開發來一個跨境電商系統涉自及的數據分析指標體系分為八大類:

不同類別指標對應電商運營的不同環節,如網站流量指標對應的是網站運營環節,銷售轉化、客戶價值和營銷活動指標對應的是電商銷售環節。

6. 電商數據分析的主要指標

電商數據分析的主要指標
運營數據化,用數據說話,用數據來發現問題,解決問題,相信大家都不陌生。現在電子商務公司對數據分析開始重視起來,但大多都是上了一個數據分析工具,比如量子、CNZZ、51la,有人每天關注。作為中小電商,有需要一個部門來做嗎?我感覺有一個人就夠了,哈哈。。。1、網站使用率:PV/UV、在線時間、跳失率、深度訪問率。這是最基本的,每項提高都不容易,需要不斷改進每個頁面中,每一個發現問題的細節。就拿跳失率來說,高了肯定不是好事,但要知道問題出在哪裡。在做活動或者上硬廣的時候,跳失率會很高,意味著人群不精準,或者廣告訴求和實際內容差距很大,或者本身頁面有問題。2、流量來源分析:監控各渠道轉化率,針對不同的渠道,做有效地營銷,UV 代表推廣力度,轉化率代表效果;轉化率的數據讓我們很清晰的了解什麼樣的渠道轉化效果好,那麼以此類推,同樣的營銷方式,用在同類的渠道上,效果差不到哪去,廣告就可以去開發同類的合作渠道,復製成功經驗。主要是給運營和推廣部門做指導方向。
3、運營數據:總銷售額、訂單數、客單價、訂單轉化率、退貨率由於用戶下單和付款不一定會在同一天完成,這些數據每周匯總,每周數據一定是穩定的。重點指導運營內部的工作,如促銷策略、定價策略、產品推廣
4、用戶分析:會員的地區分布、年齡分布、重復購買率。重復購買率提現的是電商的競爭力,絕對是內功。這包括知名度、口碑、客服、包裝、發貨等每個細節。沒有好的重復購買率是沒有任何前途的,所以很多大賣家投首頁焦點廣告,上硬廣,就是獲取用戶第一次購買,從而獲得長期的重復購買。否則花錢砸廣告,就純屬燒錢行為。
所以,我覺得運營核心工作,一方面就是做外功,提高轉化率,獲得消費者的第一次購買行為;另外一方面就是做內功,提高重復購買率。這B2C,真是算不上互聯網行業,就是傳統零售業換了一個平台,把原來從實體店賣東西,搬到了網上,減少了店面房租,增加了網上裝修設計,消費者可以足不出戶,享受當「上帝」的感覺!

閱讀全文

與電子商務數據分析指標體系相關的資料

熱點內容
火鍋店培訓計劃方案 瀏覽:128
銀行活動策劃方案總結 瀏覽:842
應急業務工作培訓方案 瀏覽:680
縣師德培訓實施方案 瀏覽:27
電子商務地區差異 瀏覽:499
學校食堂工人培訓方案 瀏覽:766
訥河電子商務進農村綜合示範 瀏覽:484
星巴克具體營銷戰略和方案 瀏覽:722
電子商務認證法律制度 瀏覽:275
市場營銷課總結 瀏覽:735
金生水起電子商務股份有限公司 瀏覽:646
市場營銷創業策劃書200字 瀏覽:768
活動策劃方案學校雙旦活動 瀏覽:123
北京電子商務創業園 瀏覽:851
免費下載小學校本培訓工作方案 瀏覽:504
答謝活動策劃方案 瀏覽:752
合作贊助策劃方案 瀏覽:949
月餅營銷方案人情消費 瀏覽:607
雷勵中國培訓活動方案 瀏覽:929
南京綠燈俠電子商務 瀏覽:365